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Abstract
The following paper describes the implementation of deep neural networks on a small-scale car platform. The car module 

which takes images from a single frontal camera is trained by deep convolutional neural networks (CNN) in an end-to-end manner 
to produce the final outputs in the form of steering angle and throttle. Both physical and virtual parts are created to check the real 
performance of the project and to compare the difference between them. Robotic Operating System (ROS) on Raspberry Pi 3+ made 
it possible to run and test keras models with the TensorFlow backend to check whether it is possible to use a single camera sensor 
to control and keep the car on the road (in our case on the track map).
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Introduction
Throughout history, humanity has tried to find better ways 

of transportation. A significant number of researchers with quick 
development of the technologies in computer vision and machine 
learning made major progress in achieving autonomous driving. 
Today, there is a high possibility to see how industry leaders are 
trying to make their cars fully automated. The statistics show that 
approximately 1.35 million people die each year because of road 
traffic crashes. While road traffic injuries are the leading cause of 
death for children and young adults aged from 5 to 29 years old [1]. 
A potential revolution of self-driving cars can decrease the number 
of fatalities caused by road accidents. With the help of modern 
computers which can store vast amounts of data and computer 
vision techniques which can process big data, researchers and 
industrial companies are achieving amazing results. One of the 
commonly used deep learning techniques known as Convolutional 
Neural Networks (CNNs) has already been implemented in many 
self-driving cars to check the robustness of the system. Convolutional 
Neural Networks are considered supervised learning as the neural 
nets are being fed a huge amount of data and being taught before  

 

taking any independent actions. It is almost like teaching your son 
or daughter to ride a bicycle, first you show them how to correctly 
ride it and later let them try to do it independently. However, with 
neural networks, it is a bit different. To train the neural nets you 
need to collect a big amount of quality data if you want to get better 
results. There are many ways of collecting such data. For instance, 
Tesla captured images and telemetry data from customer vehicles 
[2]. The data taken under different conditions can perform better 
results, because there is no guarantee that our driving will be on 
a smooth or straight way in a sunny bright day. The goal of our 
project is to collect low cost, high-quality data for inexpensive 
physical test platforms to get better control over our car model 
with robust system. The main input of our self-driving car will be 
real time video captured by a single frontal camera placed on the 
top, which later provides the system with real time data to feed our 
Convolutional layers to predict probable steering angle and throttle. 
All these data consumption, processing and finalizing the output 
will be conducted implemented end to end learning. To do so, we 
have implemented a virtual simulation of our car model as well as a 
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virtual environment to derive the difference between the real world 
and simulated ones. However, the results can be slightly or totally 
different because of the environmental influence of the real world 
compared to the virtual. The major factors can be the lightning of 
the scene in our case the place where the track map is placed, also 
the flatness of the land, and other environmental factors, while in 
our virtual environment, all those factors will be set by default and 
remain the same during training and learning sessions.

Related Work
The first implementation of neural networks in an end-to-

end manner was in 1980 [3]. ALVINN (Autonomous Land Vehicle 
in a Neural Network) used fully connected neural networks 
with 3 layers to keep itself on the tracking road. A single camera 
mounted on top of the car and a laser finder was taking images 
as input and produced the direction the vehicle should follow. In 
2000, DARPA tested it on a small-scale 50cm off-road truck (DAVE) 
[4]. Two forward-pointing wireless color cameras fed the images 
to the 6-layered CNN. However, the system was remote, where 
a computer was processing the video and sending the generated 
output to the truck via radio. During their research on end-to-end 
learning for self-driving cars, a group of NVIDIA researchers trained 
Convolutional Neural Networks to get steering commands from a 
single front-facing camera [5]. With a minimum number of training 
data acquired from humans, the car could perform well in traffic on 
local roads with or without lane markings, in highways. Surprisingly, 
the system could make correct decisions even during unclear visual 
guidance like parking lots and unpaved roads. NVIDIA DevBox and 
Torch 7 were used for data training sessions. While the system 
runs on NVIDIATM PX self- driving car computer with 30 frames 
per second (FPS), which is quite high. Another amazing project 
made by Joshua E Siegel et al. [6], where Convolutional Neural 

Networks were implemented on a radio-controlled small-scale 
vehicle, which operates on the Robotic Operating System (ROS) 
[7]. To run the same model without modifications both virtual and 
physical environments were created resemble to each other. After 
the training process on simulated environment the model was 
successfully transferred to the physical environment without any 
changes to check the robustness of the model on gamified simulator 
and physical platform. Meanwhile, Qi Zhang et al. neglected to train 
their data in an end-to-end manner to control their self-driving 
car directly from raw sensory data but chose deep reinforcement 
learning instead to let the car take free decisions like a human [8]. 
During this process an agent (RC car) for taking correct decision 
gets a reward, while for negative one gets penalty. However, Deep 
Q-learning used for the project may cause damage to the car as it is 
taking free, uncontrolled decisions.

Simulation in Virtual Environment
Objects Creation

Firstly, to create the car object, we used modeling software 
Blender 3D [9] to model the different parts of the car (Figure 
1). Then, we moved the modeled objects to a game engine 
environment. Using the virtual environment of Unity 3D platform 
[10], we created a terrain and a road for our modeled car (Figure 2). 
The physics of the car and the lighting conditions were adjusted. We 
defined the behavior and the dynamics of the car with scripts using 
C# programming language. Our Camera object has 3 sub objects as: 
Camera follow (the main camera) which follows and shows the car 
object from its rear, Camera helper for extra actions and Camera 
sensor for data generation. The car model includes car basic 
throttle, static speed and other physics, which includes Collision 
sensors as well. The car can be AI controlled (self-driving mode) or 
manually controlled with joystick (manual mode).

Figure 1: 3D object of a chassis.
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Figure 2: Final model (in Unity).

Data Generation
To generate the data which is vital for our training process we 

have switched to manual drive mode to collect images from our 
Camera sensor. During the manual drive our front camera (Camera 
sensor) took screenshots from the correct direction the car is 
following while we were controlling it by ourselves. In our C# script 
file, we have defined the directory of our generated data that should 
be saved. To avoid further problems, we have created the folder in 
the same directory as the source files located in. Totally, around 50 
000 images were collected and ready to feed our CNN layers.

Training Process
We used Anaconda Jupiter notebooks to train our model 

externally. We have extracted useful data from the images in our 
data extraction python script to extract data arrays from the images 
and save it as .csv file in the same directory. In the .csv file there are 
arrays of pixel representations of our images. After, we defined our 
train python script and set the destination for our trained model.
h5 file into our main directory to be saved. Later for the training 
session we defined CNN layers with the finisher which is fully 
connected layer. (Figures 3 & 4)

Figure 3: Design pattern of a virtual simulation.
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Figure 4: Internal state of CNN.

Hardware
Hardware Setup

Our RC car is attached to remote control which sends signals to 
steer the wheels depending on user’s control via remote controller. 
In our case, our intention is to control the car purely in an auto pilot 
mode. To do so, we must buy several extra parts, rewire the vehicle’s 
servo, and connect it to the onboard computer (Raspberry Pi3+). 
For capturing 120x160 RGB images we will need a mono frontal 
wide-angle camera and a motor controller to connect and control 
the steering servo and the electronic speed controller (ESC).

Car Chassis
One of the most important parts of our project is our RC car. 

All the things must be well considered while choosing the car and 
making a final decision on which one to buy. The signal receiver 
needs to be separate from the car’s ESC (electronic speed controller), 
so that we will be able to connect the steering servo and electronic 
speed controller to our motor controller to fully control both. The 
ESC also should allow for fine-tuning of the steering angle of the car. 
Having full control over steering is preferred, because some low-
end small-scale vehicles give only discrete angle steps (left, right 
and center). Finally, the last thing to take into consideration is the 
volume of the car, in other words the scale of the model. The scale 
range can be between 1/32 to 1/8 or more, but the car should be 
big enough to locate all parts and batteries. So, our choice was High 
speed RTR Monster Truck (HSP No.94186) with 1/16 scale [11] 
(Figure 5).

Figure 5: High speed RTR monster truck.

Motor and Servo
The main purpose of servo or actuator in a RC car is to convert 

the electrical commands received from radio control system into 
physical movement. In our case it will be plugged into a specific 
receiver channel and will be used to move specific parts of our RC 
car model. We have used the Adafruit PCA9685 16 Channel 12 Bit 
PWM Servo Driver, which has a 16-channel I2C-bus controlled LED 
controller [12]. The PCA9685 with 16-channel 12-bit PWM Servo 
Driver can control 16 servos with only 2 pins. So, to control the 

motor and servos, we will need to send specific PWM signals.

Camera
When it comes to choosing the camera, resolution is not 

important as we will be down sampling the input images during the 
training and testing time. So, we stopped by Sain Smart Wide-Angle 
Fish-Eye Camera Lenses [13], because wide angle camera will be 
good to capture and get bigger image of car’s surroundings. Also, 
the price of the camera is good.
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Raspberry Pi (Onboard Computer)
We had many different options when it came to choosing the 

onboard computer, but the important thing is the size of your 
vehicle and where the small-scale computer will be installed. We 
had a wide range of choices like NVIDIA DRIVE PX Pegasus [14], 
however it was a bit expensive and more useful for bigger projects. 
So, for smaller and cheaper projects we had options such as Arduino 
[15], Raspberry Pi 3b+ [16] and Orange Pi [17]. And finally, we 
chose Raspberry Pi 3b+ as it is easily possible to run keras models 
with TensorFlow backend on it and it includes wi-fi support.

Battery, Cables, and Screws
Except the ESC, which is powered from the vehicle’s battery, 

other components, mainly the Raspberry Pi should be connected 
to an external source of power like power banks etc. The size of 
external batteries can depend on the scale of the RC car and how 
long it should stay active. To connect our bottom and upper part 
(3D Printed roll cage and top plate) we will need M2x6 screws and 
M3x10 screws. Finally, to connected Adafruit PCA9685 16 Channel 
12 Bit PWM Servo Driver to our onboard computer Raspberry Pi we 
will use female to female jumper wires. (Figure 6)

Figure 6: (a)Raspberry Pi 3 model B+ (b)Adafruit PCA9685 16 channel 12 bit PWM servo driver        (c) SainSmart wide angle 
fish-eye camera lenses.

System Architecture
The architecture is based on distributed systems. ROS allows 

us to create multiple nodes which can exchange data via publisher/
subscriber methods. Each node operates individually. The data 
will be gathered by joystick and camera nodes and data generator 

combines them into a file and saves it for later training process. 
Once enough data is gathered, we deploy trained neural network 
in the AI Pilot Node. This node generates steering and throttle 
output based on the images taken from the camera. Then, it will 
be converted to PWM through Actuator Node and supplied to I2C 
Node (Figure 7). 

Figure 7: ROS system design.
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Training Process
Background

Kunihiko Fukushima in 1983 introduced a noncognition (a 
hierarchical multilayered artificial neural network) which could 
recognize handwritten digits and characters with the help of 
neural networks [18]. Later in 1998, LeCun introduced the first 
model of convolutional neural networks with back propagation and 
gradient based learning [19]. The system could accurately classify 
handwritten digits and characters in 32x32 image data. The result 
has proved that CNN could be used to recognize visual patterns 
with minimum number of processes. However, with the research 
of NVIDIA the CNN Pilot Net Architecture could implement and test 
CNN in an end-to-end manner to self-driving cars [5].

CNN Network Architecture
In our project we had different generated datasets during the 

different conditions of the place where our track map is placed. 
To get better results we have reduced the FPS frame rates of video 
which were recorded from the frontal camera of the car during the 
data generation process, to avoid the repentance of the same image 
frame in a high FPS. Usually, feeding CNN with data starts with RGB 

images as inputs. Like other neural networks, CNN is made up of 
learnable weights, where the nodes receive inputs, calculate the 
weighted sum, implement some filter layers, pass it through an 
activation function and respond with a best fitting output. Briefly, 
CNN layers generate a feature map of an input image by iterating 
each specified filter over an image in a certain layer extracting 
specific features. The input RGB image with 3 channels is fed into 
Conv2D layer where specified filter will iterate over the feature 
map of an image and the output will be navigated to the next lawyer. 
Among widely used layers are Max Pooling and Min Pooling. In a 
Max Pooling the specific iterated part of an image array generates a 
new feature map with matrix values where the Max number will be 
selected and built a finalized feature map, but in Min Pooling it is the 
vice versa, the Min number will have higher priority to be selected. 
After, it will be possible to implement nonlinear activation function 
ReLU. The ReLU usually makes 0 outputs which are smaller than 0, 
briefly it sketches the graphs with positive outputs in it. The output 
from the last Convolution layer will be fed into 3 fully connected 
lawyers where later it will locate the output to the SoftMax function 
where the probable best fit answer will be generated. In our case it 
will generate the output in the form of steering angles and throttles. 
(Figure 8)

Figure 8: PilotNet Architecture [5].
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Generated Dataset
The dataset was recorded through the car’s data generator 

node. We have extracted around 17 000 images from our recorded 
videos during the training process through the manual drive. As was 
mentioned before, the dataset was recorded in a lower FPS (around 
10 frames per second) to avoid any resample images which would 
not grant any additional information. To guarantee the robustness 
of the acquired dataset we have driven the car in different lightning 

conditions, with low or high brightness of the place with track map, 
in a flat or not a flat surface, with or without surroundings. Before 
images are fed into the network it was cropped to make sure that 
only the relevant part of the image is present to the system. Then 
the images were downscaled to the system architecture and later 
initialized to have RGB pixel intensities between 0 and 1, instead of 
0 to 255 to help the system to show a better performance. (Figure 
9)

Figure 9:  Recorded images from Pi camera.

Results and Discussion
We conducted experiments on our virtual model, and it gave 

the accuracy of around 95%. We used the early stop technique to 
stop the training process when there was no improvement over the 
specified period of epochs. (Figure 10) Similarly, we trained our 

model on real datasets. This time, the early stopping technique was 
utilized. However, compared to the model in virtual environment, 
it took less epochs to get converged at optimum (Figure 11). At the 
15th epoch the model seemed to be overfit, therefore we stopped 
the training process further. After deploying a trained model on a 
car, we launched the AI mode. (Figure 11)

Figure 10: Model Loss for CNN in Simulated Environment.
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Figure 11: Model Loss for Real Car Model.

Previous work made by J.E. Siegel et al. showed a difference in 
the results, where simulated vehicle showed a better performance 
compared to the physical one and as it mentioned the reasons for 
that could possibly be the different lightning conditions on virtual 
versus physical environments or different camera lenses along 
with slightly change the scene of the environments [6]. The model 
initially was trained in a simulated environment and transferred 
to the physical vehicle without retraining it. However, our models 
which were separately trained for virtual and physical environment 
shower almost same good results as we have calibrated the camera 
for those special environments along with different camera lenses 
with different capabilities, while the models were trained on the 
same computer with same functionality. In comparison to a Deep 
Reinforcement Learning conducted by Q. Zhang et al. our CNN based 
end to end algorithm took less training time and better results with 
a single camera on the real and simulated road [8]. 

As Q. Zhang says in their results that the training times took very 
long to process the images and the learned strategy was unstable, 
especially when car had to take deal with turns to generate a robust 
steering angle. From the testing part it was obvious that the leaning 
policy was also less stable, and the car wriggled frequently while 
making turns. However, our robust system generated well designed 
steering angles acquired from our single frontal camera. NVIDIA’s 
Pilot Net had a stronger architecture and tools if we compare our 
work with theirs [5]. The system had a single front-facing camera 
like ours but with much bigger volume and processing rate. And the 
work was conducted in a real car while our end-to-end approach 
was on small scale RC toy car with portable computer (Raspberry 
pi B+ type). When we switched our track map from one place to 

another one, the car did not perform as good as we expected and 
the reason for that could be different lightning conditions and 
background surroundings of the new place. Also, when we finally set 
our track map outside to test our vehicle on a clear weather day, we 
bumped into the worst-case scenario as the sun was too bright and 
the sky was too clean. Unfortunately, the environment influenced 
our robust system too badly. Meanwhile, Pilot Net with minimum 
trained data could achieve well performing cars with or without lane 
markings. And NVIDIA’s system could take the right decisions even 
during unclear weather conditions and while running on unpaved 
roads. The reason for the robustness of the system probably could 
be high processing base computer (NVIDIATM PX self-driving car 
computer) with 30 frames per seconds (FPS), which is overweighs 
ours. Also, the GPU power with NVIDIA Dev Box and Torch 7 for 
data training sessions was much higher than ours. 

Conclusion
In this paper, we described how to use deep convolutional 

neural networks in an end-to-end manner to control small scaled 
self-driving RC car. The car was built from scratch using custom 
hardware parts and trained in a manual driving mode on track 
map. We designed a virtual environment to check the performance 
of virtually autopiloted car models and later compare the results 
and changes with the physical model. We have derived important 
changes through a virtually simulated environment, which could 
possibly be added to our physical car to get vital improvements. 
After the training process we fully granted the CNN to generate 
independent steering angles and throttle controls for our car. Using 
proper forms of regularization and quality datasets may turn out to 
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yield the best results. The system learned to steer autonomously on 
simplified flat roads using only a single camera to generate its input. 
The car was able to drive indefinitely successfully autonomously on 
a circular loop of the track map it was trained on before. The biggest 
challenges we had to face were lack of data acquired from different 
environments in different lighting conditions, where the car 
sometimes could not perform well when the track map was moved 
to a new unknown environment with different surroundings.
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