
545Copyright © All rights are reserved by Muhammad Raheel Bhutta.

Advances in Robotics
& Mechanical Engineering

Research Article

Deep CNN End-to-End Learning for Autonomous
RC Cars

Muhammad Raheel Bhutta*
Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon, South Korea

*Corresponding author: Muhammad Raheel Bhutta, Department of Electrical and Computer Engineering, University of UTAH Asia
Campus, Incheon, South Korea

Received: August 04, 2023 Published: August 26, 2023

ISSN: 2643-6736

DOI: 10.32474/ARME.2023.04.000181

Abstract
The following paper describes the implementation of deep neural networks on a small-scale car platform. The car module

which takes images from a single frontal camera is trained by deep convolutional neural networks (CNN) in an end-to-end manner
to produce the final outputs in the form of steering angle and throttle. Both physical and virtual parts are created to check the real
performance of the project and to compare the difference between them. Robotic Operating System (ROS) on Raspberry Pi 3+ made
it possible to run and test keras models with the TensorFlow backend to check whether it is possible to use a single camera sensor
to control and keep the car on the road (in our case on the track map).

Keywords: Artificial intelligence; deep learning; convolutional neural networks; end-to-end learning; self-driving car; computer
vision

Introduction
Throughout history, humanity has tried to find better ways

of transportation. A significant number of researchers with quick
development of the technologies in computer vision and machine
learning made major progress in achieving autonomous driving.
Today, there is a high possibility to see how industry leaders are
trying to make their cars fully automated. The statistics show that
approximately 1.35 million people die each year because of road
traffic crashes. While road traffic injuries are the leading cause of
death for children and young adults aged from 5 to 29 years old [1].
A potential revolution of self-driving cars can decrease the number
of fatalities caused by road accidents. With the help of modern
computers which can store vast amounts of data and computer
vision techniques which can process big data, researchers and
industrial companies are achieving amazing results. One of the
commonly used deep learning techniques known as Convolutional
Neural Networks (CNNs) has already been implemented in many
self-driving cars to check the robustness of the system. Convolutional
Neural Networks are considered supervised learning as the neural
nets are being fed a huge amount of data and being taught before

taking any independent actions. It is almost like teaching your son
or daughter to ride a bicycle, first you show them how to correctly
ride it and later let them try to do it independently. However, with
neural networks, it is a bit different. To train the neural nets you
need to collect a big amount of quality data if you want to get better
results. There are many ways of collecting such data. For instance,
Tesla captured images and telemetry data from customer vehicles
[2]. The data taken under different conditions can perform better
results, because there is no guarantee that our driving will be on
a smooth or straight way in a sunny bright day. The goal of our
project is to collect low cost, high-quality data for inexpensive
physical test platforms to get better control over our car model
with robust system. The main input of our self-driving car will be
real time video captured by a single frontal camera placed on the
top, which later provides the system with real time data to feed our
Convolutional layers to predict probable steering angle and throttle.
All these data consumption, processing and finalizing the output
will be conducted implemented end to end learning. To do so, we
have implemented a virtual simulation of our car model as well as a

https://www.lupinepublishers.com/index.php
https://lupinepublishers.com/robotics-mechanical-engineering-journal/
http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

546

virtual environment to derive the difference between the real world
and simulated ones. However, the results can be slightly or totally
different because of the environmental influence of the real world
compared to the virtual. The major factors can be the lightning of
the scene in our case the place where the track map is placed, also
the flatness of the land, and other environmental factors, while in
our virtual environment, all those factors will be set by default and
remain the same during training and learning sessions.

Related Work
The first implementation of neural networks in an end-to-

end manner was in 1980 [3]. ALVINN (Autonomous Land Vehicle
in a Neural Network) used fully connected neural networks
with 3 layers to keep itself on the tracking road. A single camera
mounted on top of the car and a laser finder was taking images
as input and produced the direction the vehicle should follow. In
2000, DARPA tested it on a small-scale 50cm off-road truck (DAVE)
[4]. Two forward-pointing wireless color cameras fed the images
to the 6-layered CNN. However, the system was remote, where
a computer was processing the video and sending the generated
output to the truck via radio. During their research on end-to-end
learning for self-driving cars, a group of NVIDIA researchers trained
Convolutional Neural Networks to get steering commands from a
single front-facing camera [5]. With a minimum number of training
data acquired from humans, the car could perform well in traffic on
local roads with or without lane markings, in highways. Surprisingly,
the system could make correct decisions even during unclear visual
guidance like parking lots and unpaved roads. NVIDIA DevBox and
Torch 7 were used for data training sessions. While the system
runs on NVIDIATM PX self- driving car computer with 30 frames
per second (FPS), which is quite high. Another amazing project
made by Joshua E Siegel et al. [6], where Convolutional Neural

Networks were implemented on a radio-controlled small-scale
vehicle, which operates on the Robotic Operating System (ROS)
[7]. To run the same model without modifications both virtual and
physical environments were created resemble to each other. After
the training process on simulated environment the model was
successfully transferred to the physical environment without any
changes to check the robustness of the model on gamified simulator
and physical platform. Meanwhile, Qi Zhang et al. neglected to train
their data in an end-to-end manner to control their self-driving
car directly from raw sensory data but chose deep reinforcement
learning instead to let the car take free decisions like a human [8].
During this process an agent (RC car) for taking correct decision
gets a reward, while for negative one gets penalty. However, Deep
Q-learning used for the project may cause damage to the car as it is
taking free, uncontrolled decisions.

Simulation in Virtual Environment
Objects Creation

Firstly, to create the car object, we used modeling software
Blender 3D [9] to model the different parts of the car (Figure
1). Then, we moved the modeled objects to a game engine
environment. Using the virtual environment of Unity 3D platform
[10], we created a terrain and a road for our modeled car (Figure 2).
The physics of the car and the lighting conditions were adjusted. We
defined the behavior and the dynamics of the car with scripts using
C# programming language. Our Camera object has 3 sub objects as:
Camera follow (the main camera) which follows and shows the car
object from its rear, Camera helper for extra actions and Camera
sensor for data generation. The car model includes car basic
throttle, static speed and other physics, which includes Collision
sensors as well. The car can be AI controlled (self-driving mode) or
manually controlled with joystick (manual mode).

Figure 1: 3D object of a chassis.

http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

547

Figure 2: Final model (in Unity).

Data Generation
To generate the data which is vital for our training process we

have switched to manual drive mode to collect images from our
Camera sensor. During the manual drive our front camera (Camera
sensor) took screenshots from the correct direction the car is
following while we were controlling it by ourselves. In our C# script
file, we have defined the directory of our generated data that should
be saved. To avoid further problems, we have created the folder in
the same directory as the source files located in. Totally, around 50
000 images were collected and ready to feed our CNN layers.

Training Process
We used Anaconda Jupiter notebooks to train our model

externally. We have extracted useful data from the images in our
data extraction python script to extract data arrays from the images
and save it as .csv file in the same directory. In the .csv file there are
arrays of pixel representations of our images. After, we defined our
train python script and set the destination for our trained model.
h5 file into our main directory to be saved. Later for the training
session we defined CNN layers with the finisher which is fully
connected layer. (Figures 3 & 4)

Figure 3: Design pattern of a virtual simulation.

http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

548

Figure 4: Internal state of CNN.

Hardware
Hardware Setup

Our RC car is attached to remote control which sends signals to
steer the wheels depending on user’s control via remote controller.
In our case, our intention is to control the car purely in an auto pilot
mode. To do so, we must buy several extra parts, rewire the vehicle’s
servo, and connect it to the onboard computer (Raspberry Pi3+).
For capturing 120x160 RGB images we will need a mono frontal
wide-angle camera and a motor controller to connect and control
the steering servo and the electronic speed controller (ESC).

Car Chassis
One of the most important parts of our project is our RC car.

All the things must be well considered while choosing the car and
making a final decision on which one to buy. The signal receiver
needs to be separate from the car’s ESC (electronic speed controller),
so that we will be able to connect the steering servo and electronic
speed controller to our motor controller to fully control both. The
ESC also should allow for fine-tuning of the steering angle of the car.
Having full control over steering is preferred, because some low-
end small-scale vehicles give only discrete angle steps (left, right
and center). Finally, the last thing to take into consideration is the
volume of the car, in other words the scale of the model. The scale
range can be between 1/32 to 1/8 or more, but the car should be
big enough to locate all parts and batteries. So, our choice was High
speed RTR Monster Truck (HSP No.94186) with 1/16 scale [11]
(Figure 5).

Figure 5: High speed RTR monster truck.

Motor and Servo
The main purpose of servo or actuator in a RC car is to convert

the electrical commands received from radio control system into
physical movement. In our case it will be plugged into a specific
receiver channel and will be used to move specific parts of our RC
car model. We have used the Adafruit PCA9685 16 Channel 12 Bit
PWM Servo Driver, which has a 16-channel I2C-bus controlled LED
controller [12]. The PCA9685 with 16-channel 12-bit PWM Servo
Driver can control 16 servos with only 2 pins. So, to control the

motor and servos, we will need to send specific PWM signals.

Camera
When it comes to choosing the camera, resolution is not

important as we will be down sampling the input images during the
training and testing time. So, we stopped by Sain Smart Wide-Angle
Fish-Eye Camera Lenses [13], because wide angle camera will be
good to capture and get bigger image of car’s surroundings. Also,
the price of the camera is good.

http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

549

Raspberry Pi (Onboard Computer)
We had many different options when it came to choosing the

onboard computer, but the important thing is the size of your
vehicle and where the small-scale computer will be installed. We
had a wide range of choices like NVIDIA DRIVE PX Pegasus [14],
however it was a bit expensive and more useful for bigger projects.
So, for smaller and cheaper projects we had options such as Arduino
[15], Raspberry Pi 3b+ [16] and Orange Pi [17]. And finally, we
chose Raspberry Pi 3b+ as it is easily possible to run keras models
with TensorFlow backend on it and it includes wi-fi support.

Battery, Cables, and Screws
Except the ESC, which is powered from the vehicle’s battery,

other components, mainly the Raspberry Pi should be connected
to an external source of power like power banks etc. The size of
external batteries can depend on the scale of the RC car and how
long it should stay active. To connect our bottom and upper part
(3D Printed roll cage and top plate) we will need M2x6 screws and
M3x10 screws. Finally, to connected Adafruit PCA9685 16 Channel
12 Bit PWM Servo Driver to our onboard computer Raspberry Pi we
will use female to female jumper wires. (Figure 6)

Figure 6: (a)Raspberry Pi 3 model B+ (b)Adafruit PCA9685 16 channel 12 bit PWM servo driver (c) SainSmart wide angle
fish-eye camera lenses.

System Architecture
The architecture is based on distributed systems. ROS allows

us to create multiple nodes which can exchange data via publisher/
subscriber methods. Each node operates individually. The data
will be gathered by joystick and camera nodes and data generator

combines them into a file and saves it for later training process.
Once enough data is gathered, we deploy trained neural network
in the AI Pilot Node. This node generates steering and throttle
output based on the images taken from the camera. Then, it will
be converted to PWM through Actuator Node and supplied to I2C
Node (Figure 7).

Figure 7: ROS system design.

http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

550

Training Process
Background

Kunihiko Fukushima in 1983 introduced a noncognition (a
hierarchical multilayered artificial neural network) which could
recognize handwritten digits and characters with the help of
neural networks [18]. Later in 1998, LeCun introduced the first
model of convolutional neural networks with back propagation and
gradient based learning [19]. The system could accurately classify
handwritten digits and characters in 32x32 image data. The result
has proved that CNN could be used to recognize visual patterns
with minimum number of processes. However, with the research
of NVIDIA the CNN Pilot Net Architecture could implement and test
CNN in an end-to-end manner to self-driving cars [5].

CNN Network Architecture
In our project we had different generated datasets during the

different conditions of the place where our track map is placed.
To get better results we have reduced the FPS frame rates of video
which were recorded from the frontal camera of the car during the
data generation process, to avoid the repentance of the same image
frame in a high FPS. Usually, feeding CNN with data starts with RGB

images as inputs. Like other neural networks, CNN is made up of
learnable weights, where the nodes receive inputs, calculate the
weighted sum, implement some filter layers, pass it through an
activation function and respond with a best fitting output. Briefly,
CNN layers generate a feature map of an input image by iterating
each specified filter over an image in a certain layer extracting
specific features. The input RGB image with 3 channels is fed into
Conv2D layer where specified filter will iterate over the feature
map of an image and the output will be navigated to the next lawyer.
Among widely used layers are Max Pooling and Min Pooling. In a
Max Pooling the specific iterated part of an image array generates a
new feature map with matrix values where the Max number will be
selected and built a finalized feature map, but in Min Pooling it is the
vice versa, the Min number will have higher priority to be selected.
After, it will be possible to implement nonlinear activation function
ReLU. The ReLU usually makes 0 outputs which are smaller than 0,
briefly it sketches the graphs with positive outputs in it. The output
from the last Convolution layer will be fed into 3 fully connected
lawyers where later it will locate the output to the SoftMax function
where the probable best fit answer will be generated. In our case it
will generate the output in the form of steering angles and throttles.
(Figure 8)

Figure 8: PilotNet Architecture [5].

http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

551

Generated Dataset
The dataset was recorded through the car’s data generator

node. We have extracted around 17 000 images from our recorded
videos during the training process through the manual drive. As was
mentioned before, the dataset was recorded in a lower FPS (around
10 frames per second) to avoid any resample images which would
not grant any additional information. To guarantee the robustness
of the acquired dataset we have driven the car in different lightning

conditions, with low or high brightness of the place with track map,
in a flat or not a flat surface, with or without surroundings. Before
images are fed into the network it was cropped to make sure that
only the relevant part of the image is present to the system. Then
the images were downscaled to the system architecture and later
initialized to have RGB pixel intensities between 0 and 1, instead of
0 to 255 to help the system to show a better performance. (Figure
9)

Figure 9: Recorded images from Pi camera.

Results and Discussion
We conducted experiments on our virtual model, and it gave

the accuracy of around 95%. We used the early stop technique to
stop the training process when there was no improvement over the
specified period of epochs. (Figure 10) Similarly, we trained our

model on real datasets. This time, the early stopping technique was
utilized. However, compared to the model in virtual environment,
it took less epochs to get converged at optimum (Figure 11). At the
15th epoch the model seemed to be overfit, therefore we stopped
the training process further. After deploying a trained model on a
car, we launched the AI mode. (Figure 11)

Figure 10: Model Loss for CNN in Simulated Environment.

http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

552

Figure 11: Model Loss for Real Car Model.

Previous work made by J.E. Siegel et al. showed a difference in
the results, where simulated vehicle showed a better performance
compared to the physical one and as it mentioned the reasons for
that could possibly be the different lightning conditions on virtual
versus physical environments or different camera lenses along
with slightly change the scene of the environments [6]. The model
initially was trained in a simulated environment and transferred
to the physical vehicle without retraining it. However, our models
which were separately trained for virtual and physical environment
shower almost same good results as we have calibrated the camera
for those special environments along with different camera lenses
with different capabilities, while the models were trained on the
same computer with same functionality. In comparison to a Deep
Reinforcement Learning conducted by Q. Zhang et al. our CNN based
end to end algorithm took less training time and better results with
a single camera on the real and simulated road [8].

As Q. Zhang says in their results that the training times took very
long to process the images and the learned strategy was unstable,
especially when car had to take deal with turns to generate a robust
steering angle. From the testing part it was obvious that the leaning
policy was also less stable, and the car wriggled frequently while
making turns. However, our robust system generated well designed
steering angles acquired from our single frontal camera. NVIDIA’s
Pilot Net had a stronger architecture and tools if we compare our
work with theirs [5]. The system had a single front-facing camera
like ours but with much bigger volume and processing rate. And the
work was conducted in a real car while our end-to-end approach
was on small scale RC toy car with portable computer (Raspberry
pi B+ type). When we switched our track map from one place to

another one, the car did not perform as good as we expected and
the reason for that could be different lightning conditions and
background surroundings of the new place. Also, when we finally set
our track map outside to test our vehicle on a clear weather day, we
bumped into the worst-case scenario as the sun was too bright and
the sky was too clean. Unfortunately, the environment influenced
our robust system too badly. Meanwhile, Pilot Net with minimum
trained data could achieve well performing cars with or without lane
markings. And NVIDIA’s system could take the right decisions even
during unclear weather conditions and while running on unpaved
roads. The reason for the robustness of the system probably could
be high processing base computer (NVIDIATM PX self-driving car
computer) with 30 frames per seconds (FPS), which is overweighs
ours. Also, the GPU power with NVIDIA Dev Box and Torch 7 for
data training sessions was much higher than ours.

Conclusion
In this paper, we described how to use deep convolutional

neural networks in an end-to-end manner to control small scaled
self-driving RC car. The car was built from scratch using custom
hardware parts and trained in a manual driving mode on track
map. We designed a virtual environment to check the performance
of virtually autopiloted car models and later compare the results
and changes with the physical model. We have derived important
changes through a virtually simulated environment, which could
possibly be added to our physical car to get vital improvements.
After the training process we fully granted the CNN to generate
independent steering angles and throttle controls for our car. Using
proper forms of regularization and quality datasets may turn out to

http://dx.doi.org/10.32474/ARME.2023.04.000181

Citation: Muhammad Raheel Bhutta*. Deep CNN End-to-End Learning for Autonomous RC Cars. Adv in Rob & Mech Engin 4(2)- 2023.
ARME.MS.ID.000181. DOI: 10.32474/ARME.2023.04.000181

 Volume 4 - Issue 2 Copyrights @ Muhammad Raheel BhuttaAdv in Rob & Mech Engin

553

yield the best results. The system learned to steer autonomously on
simplified flat roads using only a single camera to generate its input.
The car was able to drive indefinitely successfully autonomously on
a circular loop of the track map it was trained on before. The biggest
challenges we had to face were lack of data acquired from different
environments in different lighting conditions, where the car
sometimes could not perform well when the track map was moved
to a new unknown environment with different surroundings.

References
1. World Health Organization.

2. Los Angeles magazine.

3. Pomerleau DA (1988) ALVINN: An Autonomous land vehicle in a neural
network.

4. LeCun Y, Muller U, Ben J, Cosatto E, Flepp B (2005) Off-Road Obstacle
Avoidance through End-to-End Learning.

5. Bojarski M, Testa DD, Dworakowski D, Firner B, Flepp B, et al. (2016)
End to End Learning for Self-Driving Cars.

6. Siegel JE, Pappas G, Sun Y (2009) A gamified simulator and physical
platform for self-driving algorithm training and validation.

7. (2020) Robotic Operating System.

8. Zhang Q, Du T, Ch Tia (2019) Self-driving car trained by Deep
reinforcement learning.

9. (2020) Blender.

10. (2020) Unity.

11. (2020) Amazon.

12. (2020) Adafruit.

13. (2020) SainSmart Wide Angle Fish-Eye Camera Lenses.

14. (2020) NVIDIA DRIVE PX Pegasus.

15. (2020) Arduino.

16. (2020) Raspberry Pi 3b+.

17. (2020) Orange Pi.

18. Fukushima k (1980) Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Pattern Recognition Unaffected by Shift in
Position. In Biological Cybernetics 36(1980): 193-202.

19. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning
applied to document recognition. In 88(11): 2278-2324.

Advances in Robotics &
Mechanical Engineering

Assets of Publishing with us

• Global archiving of articles

• Immediate, unrestricted online access

• Rigorous Peer Review Process

• Authors Retain Copyrights

• Unique DOI for all articles

This work is licensed under Creative
Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Article

DOI: 10.32474/ARME.2023.04.000181

http://dx.doi.org/10.32474/ARME.2023.04.000181
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://lamag.com/business/tesla-recording-data-privacy
https://proceedings.neurips.cc/paper/1988/file/812bUGMJbmWsDgRJPYuwmpYoKQp4ke83UCb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812bUGMJbmWsDgRJPYuwmpYoKQp4ke83UCb-Paper.pdf
https://www.researchgate.net/publication/221620190_Off-Road_Obstacle_Avoidance_through_End-to-End_Learning
https://www.researchgate.net/publication/221620190_Off-Road_Obstacle_Avoidance_through_End-to-End_Learning
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1911.07759
https://arxiv.org/abs/1911.07759
https://www.ros.org/
https://www.blender.org/
https://unity.com/
https://www.amazon.ae/HSP-No-94186-Kidking-Off-road-Electric/dp/B081XZYNPC
https://www.adafruit.com/product/815
https://www.amazon.com/SainSmart-Fish-Eye-Camera-%20Raspberry-Arduino/dp/B00N1YJKFS
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
https://www.arduino.cc/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
http://www.orangepi.org/
https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251
https://ieeexplore.ieee.org/document/726791/authors
https://ieeexplore.ieee.org/document/726791/authors
http://dx.doi.org/10.32474/ARME.2023.04.000181

	Abstract

