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Abstract
Ranolazine is an anti-ischemic that inhibit late sodium channel(INal), reduces calcium excess, lowers diastolic tension and 

improves cardiac relaxation. Ivabradine inhibits the open state of the intracellular portion of the hyperpolarization-activated cyclic 
nucleotide-gated(HCN) channel in sinoatrial-node, transporting sodium(Na+) and potassium(K+) ions. Inward funny current 
(If), hyperpolarized, is inhibited. If lengthen diastole, decrease slope of the pacemaker action potential’s diastolic depolarization 
without changing the action potential’s. Phosphodiesterase-III(PDE3)-inhibitor,  clostazol and inamrinone, break down cGMP 
and core cAMP. In review on elucidation and possible mechanism of action of cardioprotective drugs viz. Ranolazine, Ivabradine, 
Cilostazol and Inamrinone found beneficial in Ischemic Reperfusion induced cardiac injury. But secondary biological mediators like 
nitric-oxide, bradykinin, K+ATPase channels, serotoninergic pathway, adenosine involvement have not been elucidated yet. These 
secondary mechanisms are of prime importance because ischemic pre-conditioning involves cardioprotection by above biological 
mediators. Full mechanisms of action of above four drugs are essential in cardioprotection in ischemia reperfusion injury model. 

Keywords: Coronary artery disease; Myocardial infraction; Angina pectoris; Cardioprotective Drugs mechanism of action; 
Ischemia reperfusion injury

Introduction
Cardio protection refers to all techniques and methods that lessen 

or even stop myocardial damage in order to preserve the heart. [1] 
Cardio protection includes a number of protocols that have demon-
strated to maintain the survival and function of cardiac muscle cell 
tissue in the face of ischemia insult or re oxygenation. Precondition 

 
ing (PC), per conditioning (Per C), pre-ischemic event management 
(PEDM), post-ischemic event management (PEDM), and reperfusion 
are all examples of cardio protection techniques (post conditioning, 
Post C). [2] These tactics can be further subdivided into classes of con-
ditioning known as remote ischemic PC (RIPC), remote ischemic Post 
C, and remote most ischemic Per C depending on whether the inter-
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vention is carried out locally or remotely. [2,3] Myocardial infarction 
is prevented by the early phase of classical (local) preconditioning, 
which has an immediate onset and lasts for two to three hours. [3]

The activation of G protein-coupled receptors, as well as down-
stream MAPKs and PI3/Akt, results in the early phase’s post-trans-
lational modification of already-existing proteins. As a result of these 
signalling events, the MTP (mitochondrial permeability transition 
pore) is not allowed to open by activating PKC and the RISK path-
way, which operate on the ROS-producing mitochondria. [4] The late 
phase, which starts between 12 and 24 hours after an ischemia event 
and lasts for three to four days, prevents both myocardial stunning 
and reversible post ischemic contractile dysfunction [5-7]. As a result 
of the actions of kinases like PKC and Src, which in turn increase gene 
transcription and upregulate late PC molecular players, this phase in-
volves the creation of novel cardio protective proteins (e.g., antioxi-
dant enzymes, iNOS). [8] There has been evidence or speculation that 
PKC plays a role in more modern cardio protection techniques includ-
ing RIPC, local Post C, and remote Post C. It has been demonstrated 
that with RIPC activation, PKC moves from the cytosol to the particu-
late fraction, and that the PKC inhibitor chelerythrine can reduce the 
protection provided by RIPC [12,13]. Similar to local Post C models, 
it has been demonstrated that PKC activation and phosphorylation 
are enhanced, and PKC inhibition reduces the therapeutic benefits of 
these regimens [14,15]. Inhibiting Hsp90 activity with geldanamycin 
prevents Post C protection and PKC translocation, according to a re-
cent study. [16] It has not been convincingly shown that PKC has a 
function in remote Post  C and Per C, hence more research is needed 
to explore this.

Ranolazine
Ranolazine is currently approved as a second-line treatment in 

Europe and the United States agent for the treatment of chronic stable 
angina pectoris (CSAP) [17]. Both in experimental animal and in peo-
ple with coronary artery disease, this medication’s anti-ischemic and 
anti-anginal properties have been well examined. Ranolazine is clini-
cally efficacious at plasma concentrations of 2–6µm, which do not sig-
nificantly alter the rate–pressure product, unlike other anti–anginal 
medications. Other factors that affect myocardial oxygen consump-
tion, such as cardiac contractility and preload, were not assessed in 
these clinical studies. Ranolazine is believed to have an anti-ischemic 
effect by inhibiting the late sodium channel (inal), which reduces the 
NaI-dependent cellular calcium excess and, as a result, lowers diastol-
ic tension and improves cardiac relaxation [18]. The first antianginal 
medication that can prevent ischemia consequences without affecting 
blood pressure or heart rate is Ranolazine [19]. Although the exact 
way ranolazine shields the myocardium is unknown, it has been sug-
gested that it modifies myocardial metabolism, lessening the severity 
of acidosis and lactate build up brought on by anaerobic metabolism. 
Others have hypothesised that this substance might boost oxygen 
uptake by switching the substrate used from fatty acids to carbohy-
drates. The finding that ranolazine increases the amount of active 
pyruvate dehydrogenase in isolated hearts during low flow ischaemia 
is consistent with the latter mechanism with respect to its anti-ischae-

mic and cardio protective properties [20].

Ivabradine
Ivabradine reduces heart rate by specifically inhibiting the 

sinoatrial node’s pacemaker activity. Few researches have after a 
re-perfused myocardial infarction, the effects of ivabradine on the me-
chanical characteristics of the heart were studied. [21] Advances us-
ing ultrasound speckle-tracking, strain assessments in small-animal 
models can be carried out, allowing the evaluation of regional strain 
a mechanical process. The recently approved US Food and Drug Ad-
ministration Ivabradine, a medicine for the heart, specifically blocks 
the cyclic nucleotide-gated hyperpolarization-activated (HCN) the 
sinoatrial node’s channels [22]. This obstruction causes a decreased 
cardiac pacemaker, or humorous, current (If),lowering the sluggish 
diastolic depolarization phase’s slope of the sinoatrial node action 
potential, resulting in heart rate slowdown usage ivabradine’s effect 
on the HCN channel is rate making the medication more effective in 
people with dependent an increased heart rate [23]. Two significant 
multicenter investigations have shown the advantages of ivabradine 
as a supplement to recommended therapeutic options such b-block-
ers and angiotensin-enzyme inhibitors in people with left ventricu-
lar dysfunction (LV) having heart rates over 70 bpm and malfunction 
[24].

Cilostozol
Cilostazol is an antiplatelet agent that blocks phosphodiester-

ase-III, raises cellular levels of cyclic adenosine monophosphate 
(AMP), and activates protein kinase A [25]. The prevention of platelet 
aggregation and cilostazol-induced vessel dilatation are attributed to 
the enhanced amounts of cyclic AMP in platelets and vascular smooth 
muscle cells [26]. Currently, clostazol is therapeutically used to treat 
peripheral vascular disease, arterial disease [27,28] and ischemic 
stroke [29,30]. However, because peripheral arterial disease is fre-
quently linked to coronary artery disease, [31,32] it is crucial to inves-
tigate if cilostazol is also a cardio protective. Ischaemic precondition-
ing is an innate cardio protective process, and its mechanism involves 
adenosine, [33] nitric oxide, and oxide (NO)[34] and the opening of 
mitochondrial KATP channels. It has been suggested that superoxide 
has a role in the heart’s ischaemia-reperfusion injury [35]. 

Inamrinone
 Inamrinone has  a significant influence on the creation of novel 

cardiotonic agents and served as a major precursor to non-catechol 
and non-glycoside medicines. Inamirone’s unexpected failure to help 
the chronic heart failure patients led to a significant paradigm change 
from inotropic to cardioprotective therapy and advancements in the 
field of pharmacotherapy for chronic heart failure [36].  

Mechanism of Action of Ranolozine
Myocardial ischemia is characterised by decreased ATP fluxes and 

energy supplies, which affect the intracellular ion balance of cardiac 
myocytes. Increased persistent (late) sodium current has been theo-
rised to contribute to disrupted ion homeostasis by increasing intra-
cellular sodium concentration, which in turn causes intracellular cal-
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cium to increase. Ranolazine, a brand-new anti-ischemia medication, 
works by inhibiting late sodium current specifically, which lessens salt 
excess and improves disrupted ion homeostasis. This is linked to a re-
duction in angina symptoms in individuals. Ranolazine was also found 
to have anti-arrhythmic properties. The importance of late sodium in-
hibition is reviewed in this article, and we also provide an overview of 
the most current findings from both basic and clinical research [37]. 

Current therapeutic strategies
The therapeutic goals of medical treatment for coronary heart 

disease can be divided into three categories [38-54], according to the 
2006 European Society of Cardiology guidelines [54]: 

a. Immediate short-term relief, 

b. Treatment targeted at symptom relief, and 

c. Treatment aims at improving prognosis. 

With the exception of -blockers after myocardial infarction, it’s 
interesting to note that there is no overlap between medications that 

enhance prognosis and those that reduce symptoms. This implies that 
mechanisms influencing thrombocyte function and anti-inflammato-
ry or cytokine-neurohumoral effects may be advantageous for surviv-
al, whereas ischemia, which causes symptoms, may not be a primary 
mechanism relevant to prognosis. In order to address the imbalance 
between the heart’s oxygen supply and demand, which is relevant 
to myocardial ischemia and angina pectoris, current drug-induced 
symptom relief treatments try to reduce symptoms [54]. The oxygen 
demand of the myocardium is decreased by all of the substances in this 
category: -blockers, calcium channel antagonists, nitrates, K-channel 
openers, and sinus node inhibitors. This can happen directly by affect-
ing the myocardium or indirectly by having complex impacts on fac-
tors that determine hemodynamics [51]. Nitrates, K-channel openers, 
and calcium channel antagonists can all help the heart’s blood flow 
and oxygen delivery. Ranolazine (Figure 1), a piperazine derivative, 
is a new anti-ischemic drug for the treatment of angina, whose mode 
of action is different from the pharmacological principals mentioned 
above [40].

Figure 1: Structure of Ranolazine.

Pathophysiology of myocardial ischemia relevant to action of ranolazine

Figure 2: Scheme for the pathophysiology of myocardial ischemia and the role of late INa inhibition with Ranolazine.
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Reduced ATP fluxes and decreased energy supply to several es-
sential proteins for the contraction-relaxation cycle of the individual 
cardiac myocyte are the immediate effects of myocardial ischemia. 
These include the proteins that manage the homeostasis of myocyte 
ions. As a result, the concentrations of intracellular sodium and calci-
um are disrupted, which is important for the myocardial injury that 
results from ischemia. Energy deficiency raises intracellular sodium 
through a number of methods (Figure 2). Sodium enters the cell pri-
marily through the cardiac sodium channel after depolarization dur-
ing the action potential’s fast upstroke phase. This additional fast de-
polarization brought on by the sodium influx results in the activation 
of voltage-gated L-type calcium channels, which then results in the 
influx of calcium. Within one to three milliseconds, sodium channels 

spontaneously deactivate. The following membrane depolarization 
has the potential to activate channels that recycle [45]. This usual rap-
id sodium current has been found to be susceptible to changes under 
pathological circumstances such hypoxia, exposure to ischemia me-
tabolites, and reactive oxygen species [46-69]. When this occurs, the 
sodium channel opens distinctly up to a few hundred milliseconds af-
ter depolarization, and this phenomenon is known as late (or persis-
tent) sodium current (late INa, Figure 3) [52,66-69]. During ischemia, 
a significant portion of the increased intracellular sodium may come 
from late INa. Sodium inflow via the sodium-proton pump [44] or a 
lack of sodium removal via the sodium potassium ATPase are two oth-
er mechanisms causing an abnormal sodium balance.

Figure 3: Late INa under normal and increased late INa under pathophysiological conditions.

Lack of energy causes the phosphorylation potential to drop, 
which reduces the free energy available for calcium transport into 
the sarcoplasmic reticulum. As a result, intracellular calcium builds 
up in the cytosol. Due to the activation of contractile proteins even 
during diastole caused by high diastolic calcium levels, diastolic dys-
function results. Elevated intracellular sodium significantly worsens 
disturbed sarcoplasmic reticulum calcium buildup. One calcium ion is 
exchanged for three sodium ions during each cycle of the sarcolemmal 
sodium-calcium exchanger. There are two ways the sodium-calcium 
exchanger might function. To achieve diastolic relaxation, it removes 
calcium from the cell when in the forward mode (in addition to calci-
um reuptake into the sarcoplasmic reticulum). In its reverse mode, it 
delivers calcium into the cell in return for transsarcolemmal sodium 
removal (often during the action potential). The protein concentra-
tion, membrane potential, intracellular sodium, and intracellular cal-
cium concentrations all affect the activity and direction of transport. 
Following cardiac hypoxia, sodium buildup (via late INa) encourages 

reverse mode sodium-calcium exchange, which lowers the capacity 
of the cell as a whole to remove calcium from the extracellular space. 
This worsens diastolic dysfunction brought on by contractile protein 
activation and increases the increased diastolic calcium caused by 
decreased sarcoplasmic reticulum calcium pump functioning. Energy 
expenditure increases when contractile proteins are activated during 
diastole [55]. Additionally, increasing diastolic tone worsens the is-
chemic myocardium’s energy balance by raising microcirculatory re-
sistance. As a result, diastolic dysfunction after myocardial ischemia 
leads to an increase in energy consumption and an aggravation of 
the disrupted energy balance. Ranolazine has been shown to be a po-
tent inhibitor of late INa and therefore interrupts a major step in the 
pathophysiology of myocardial ischemia [48].

Ranolazine has been demonstrated to suppress late INa in myo-
cytes from the hearts of dogs and guinea pigs in a concentration, volt-
age, and frequency-dependent manner [48]. Ranolazine has also been 
demonstrated to stop H2O2 from increasing late INa [63]. In particu-

http://dx.doi.org/10.32474/RRHOAJ.2023.08.000281


Citation: Ashish Kumar Sharma*, Mehvish Bhat, Shivam Singh, Kartik Gill, Mohammad Zaid and Junaid Tantray. Elucidation and Possible 
Mechanism of Action of Cardio Protective Drugs viz. Ranolazine, Ivabradine, Cilostazol and Inamrinone in Ischemic Reperfusion Induced 
Cardiac Injury. Res & Rev Health Care Open Acc J 8(2)- 2023. RRHOAJ.MS.ID.000281. DOI: 10.32474/RRHOAJ.2023.08.000281

                                                                                                                                                      Volume 8 - Issue 3   Copyrights @ Ashish Kumar Sharma Res & Rev Health Care Open Acc J

841

lar, ranolazine has been demonstrated to reverse the steady increase 
in diastolic and systolic calcium brought on by the sea anemone toxin 
ATX-II, a well-known activator of late INa [47 64]. Ranolazine’s prima-
ry method of action is to inhibit late INa, preventing sodium overload 
of the cell as a result. As a result, ranolazine blocks reverse mode so-
dium-calcium exchange and subsequently diastolic calcium buildup, 
which may enhance diastolic tone [50,65] and coronary blood flow 
[47]. Ranolazine has therefore been demonstrated to lessen post-is-
chemic contracture inn rabbit isolated perfused hearts subjected to 
ischemia and reperfusion [48]. As a late INa inhibitor, ranolazine was 
also shown to increase action potential duration and thus modestly QT 
interval by 2–5 ms [42,43]. This effect, however, is not heart rate-de-
pendent and cannot be exaggerated during bradycardia [39,57-70]. 
Furthermore, ranolazine does not induce early after depolarisations 
and does not increase dispersion of repolarisation across the left ven-
tricular wall [71-82]. According to this profile ranolazine does not in-
crease the risk of Torsade de pointes tachycardia as it is observed with 
many other QT interval prolonging agents.

Clinical effects of Ranolazine
Several clinical trials have been conducted so far to study ranola-

zine. The effectiveness of quick release ranolazine has been studied 
in three preliminary trials [46,58,61]. Sustained release ranolazine’s 
effectiveness in treating patients with chronic stable angina has been 
investigated in two bigger phase 3 studies. In MARISA (Monotherapy 
Assessment of Ranolazine In Stable Angina), 191 patients were ran-
domly assigned to receive ranolazine or a placebo in a cross-over de-
sign for a one-week treatment period [43]. Patients were assigned at 
random in the CARISA (Combination Assessment of Ranolazine in Sta-
ble Angina) study to receive placebo or ranolazine in addition to prior 
anti-anginal medication. For 12 weeks, the treatment was continued 
[42]. In individuals with stable angina, ranolazine monotherapy dra-
matically enhanced exercise performance, according to MARISA. This 
held true for the length of the workout, the elapsed time before angi-
na, and the interval between each event. More particular, only 52% of 
patients in the ranolazine group discontinued their activity test be-
cause to angina, compared to 70% of patients in the placebo group 
who did so (1.5 g bidaily). Time to angina, peak and trough exercise 
duration, and time to 1 mm ST depression all improved with CARISA. 
A 12-week treatment period resulted in these effects remaining. Ad-
ditionally, ranolazine (1 g bidaily) decreased the frequency of angina 
events from a baseline of 4.5 per week to 2.1 per week compared to 
3.3 per week for placebo. Most notably, there were no clinically signifi-
cant changes in blood pressure or heart rate as a result of ranolazine’s 
anti-anginal effects in MARISA and CARISA. The impact of  ranolazine 
medication on patients with acute coronary syndromes was investi-
gated in the MERLIN (Metabolic Efficiency with Ranolazine for Less 
Ischemia in Non-ST elevation Acute Coronary Syndrome) TIMI-36 tri-
al [18]. A total of 6560 patients with non-ST elevation ACS who were 
receiving standard therapy participated in the multi-national, dou-
ble-blind, randomised, placebo-controlled, parallel-group clinical trial 
known as MERLIN to assess the effectiveness and safety of ranolazine 
during acute and long-term treatment. 

Eligible hospitalised patients were entered in the study within 48 
hours of the onset of angina caused by ACS and randomly assigned 
to receive intravenous ranolazine or a placebo, followed by long-term 
treatment with ranolazine tablets or a placebo. Despite the fact that 
ranolazine had no discernible effect on the primary composite end-
point of cardiovascular death, myocardial infarction, or recurrent 
ischemia, subsequent studies have shown 13% relative reduction 
in the risk of recurrent ischemia. Ranolazine also had positive safe-
ty endpoint results. Ranolazine may have possible antiarrhythmic 
properties, in particular [62]. The results of the trial support this [41]. 
Ranolazine is hence safe for use in inhibiting late INa, especially in 
terms of electrophysiological characteristics. The findings of MERLIN 
support prior findings regarding the safety and benefit of ranolazine 
as an antianginal therapy and suggest a benefit of ranolazine as an 
antianginal therapy in a large population of patients with established 
ischemic heart disease, despite the fact that the results do not support 
its use for the acute management of ACS.

Future aspects for clinical application of Ranolazine
Ranolazine’s ability to inhibit elevated late INa may offer a fresh 

approach to treating cardiac conditions characterised by altered myo-
cardial ion homeostasis. Elevated intracellular sodium has been seen 
in various animal failure models as well as in human heart failure 
[53, 59]. Recent research has demonstrated that higher intracellular 
sodium levels in heart failure may, in part, be caused by CaMKII-de-
pendent phosphorylation of sodium channels, which leads to an in-
crease in late INa [67]. Therefore, by restoring disrupted sodium ho-
meostasis, ranolazine may be a promising treatment for systolic heart 
failure. A significant pathophysiological component in diastolic heart 
failure may potentially be calcium excess following disrupted sodium 
homeostasis [68]. Therefore, we hypothesise that ranolazine may be 
a novel, alluring therapy option in diastolic heart failure caused by 
disrupted sodium/calcium homeostasis. To investigate the potential 
therapeutic efficacy of ranolazine, investigations in heart failure with 
systolic and diastolic dysfunction are therefore necessary [69].

Mechanism of Action of Ivabradine
Ivabradine’s therapeutic application has developed and is still 

developing along lines based on its mode of action. It works different-
ly from other negative chronotropic drugs in that it specifically sup-
presses the funny current (If) in sinoatrial nodal tissue, which lowers 
the rate of diastolic depolarization and, as a result, the heart rate. As a 
result, it has been examined and is used in a small number of patients 
with chronic stable angina and systolic heart failure without causing 
clinically significant side effects. Even though it hasn’t been approved 
for other uses, ivabradine has showed potential in the treatment of 
unneeded sinus tachycardia. In this article, the writers discuss the 
ivabradine mechanism of action and significant studies that helped 
to determine its current therapeutic applications. Based on regional 
regulatory approval, the indications for the use of ivabradine have 
changed over time in different ways (Figure 1). 

Expectations for its potential influence in cardiovascular medi-
cine were high because it is a rare pharmacological agent that may 
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precisely lower heart rate without causing the adverse effects associ-
ated with other similar drugs. This medication has been investigated 
as a treatment agent for problems in all 3 major fields of cardiology 
in numerous small and big trials (i.e., coronary artery disease, heart 
failure [HF], and electrophysiology). We intend to present a succinct 
and concentrated assessment of the pharmacological features of iv-
abradine in this review, followed by a review of much significant re-
search that have contributed to its current clinical use. Ivabradine’s 
indications for use have changed throughout time and depend on 
the region (Figure 4). The results of several randomised controlled 
trials since it was first approved by the European Medicines Agency 
(EMA) for use in angina in 2005 have led to expanded indications to 

include specific heart failure patients and only recent approval by the 
U.S. Food and Drug Administration (FDA) for this indication. BEAUTI-
FUL = Morbidity-Mortality Assessment of Ivabradine, an If Inhibitor, 
in Patients With Coronary Disease and Left Ventricular Dysfunction; 
Heart failure with reduced ejection fraction (HFrEF), left ventricular 
ejection fraction (LVEF), myocardial infarction (MI), coronary artery 
disease (CAD), normal sinus rhythm (NSR), and cardiovascular dis-
ease (CV) are all abbreviations for the same condition. Systolic Heart 
Failure Treatment with the Ivabradine Trial (SHIFT); SIGNIFY  = Study 
Assessing the Morbidity-Mortality Benefits of the If Inhibitor Ivabra-
dine in Patients With Coronary Artery Disease [70].

Figure 4: Approval Timeline of Ivabradine Across Europe and the United States.

The sinoatrial node is distinct in that it is driven toward the 
threshold required for spontaneous depolarization by the natural 
ability of its cells to produce a cyclical shift in their resting membrane 
potential. Its automaticity is explained by the recurrent, spontaneous 
action potentials that are produced as a result of this depolarization. 
This depolarization is brought on by the activation of certain ion chan-
nels that carry the pacemaker or “funny” current, a slow, inward-de-
polarizing mixed sodium-potassium current (If).[71] is produced via 

a nonselective, hyperpolarization-activated cyclic nucleotide-gated 
transmembrane channel (Central Illustration). Ivabradine inhibits 
cation flow with a high degree of selectivity, blocking the intracellular 
portion of this transmembrane channel. This slows the heart rhythm 
by lowering the slope of the diastolic depolarization of the pacemaker 
action potential. Ivabradine blocks the channel in its open state, re-
sulting in the use dependence—a very positive quality (i.e., it becomes 
more potent at faster heart rates). Ivabradine lowers heart rate in a 
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dose-dependent manner without influencing cardiac inotropy or sys-
temic vascular resistance as a result of its unique mechanism of action 
[72,73]. 

a) The sinoatrial (SA) node, located at the intersection of the 
right atrium and superior vena cava (SVC), is the site of ivabra-
dine’s main mode of action on cardiac tissue (RA). 

b) Ivabradine inhibits the open state of the intracellular por-
tion of the hyperpolarization-activated cyclic nucleotide-gated 
(HCN) transmembrane channel in the sinoatrial node, which is 
in charge of transporting sodium (Na+) and potassium (K+) ions 
across the cell membrane.

c) As a result, the inward funny current (If), which is only trig-
gered at membrane potentials that are too hyperpolarized, is in-
hibited. 

d) By specifically inhibiting If, it is possible to lengthen diastole 
and decrease the slope of the pacemaker action potential’s dias-
tolic depolarization (shaded region) without changing the action 
potential’s other phases. Reduced heart rate is the outcome of 
this. IVC is for inferior vena cava, PA stands for pulmonary artery, 
and RV stands for right ventricle.

Clinical use in Electrophysiological Disorders (Inappro-
priate Sinus Tachycardia)

The most common use of ivabradine in electrophysiology is to 
treat improper sinus tachycardia (IST) [74]. It is commonly acknowl-
edged that this illness is a challenging condition to adequately treat. 
Beta-blockers and non-dihydropyridine calcium-channel antagonists 
commonly cause negative effects and only seldom relieve symptoms. 
Ivabradine may be useful in IST, according to various case reports 
and short nonrandomized studies [75,76]. There is just one tiny ran-
domised, double-blind, placebo-controlled, crossover experiment 
[77]. Ivabradine was connected to significant decreases in heart rate 
at rest (12 beats/min), after standing (16 beats/min), over the 24-
hour period (11 beats/min), and during exercise (18 beats/min) in 
21 patients. In comparison to placebo, ivabradine generally reduced 
symptoms by more than 70%. There were several noteworthy find-
ings, including the following: 

a. Subjects with completely resolved symptoms did not show 
a greater reduction in heart rate compared to those with partially 
resolved symptoms; [78]

b. Symptoms were not always resolved despite similar reduc-
tions in heart rate; and

c. Side effects were less frequently reported when compared 
to other trials. 

Further randomised investigations are necessary despite the fact 
that this study showed short-term efficacy in IST. Ivabradine was giv-
en a Class IIa recommendation for the treatment of symptoms in the 
2015 Heart Rhythm Society expert consensus statement due to the 
limited quantity and high quality of the data supporting it for IST . 
It should be emphasised that the use of ivabradine for IST is not an 
EMA/FDA-approved indication [79]. The potential effectiveness of iv-

abradine in treating postural orthostatic tachycardia syndrome, sinus 
tachycardia observed after ablation of atrioventricular nodal re-en-
trant tachycardia, and refractory junction ectopic tachycardia is only 
partially supported by the available data, [80-83].

Mechanism of Action of Cilostozol
A phosphodiesterase III (PDE3) inhibitor is clostazol. PDE3s are 

enzymes that break down cyclic guanosine monophosphate (cGMP) 
and cyclic adenosine monophosphate using a catalytic core (cAMP). 
[84] In order to control the contractility of arteries and veins’ smooth 
muscle and the cardiac sarcoplasmic reticulum, respectively, phos-
phodiesterase III enzymes are largely found in these tissues. Cilosta-
zol works by preventing phosphodiesterase activity and preventing 
the breakdown of cAMP. A increase in cAMP in platelets and blood 
arteries is made possible by the inhibition of PDE3. Protein kinase A 
(PKA) in its active state is directly linked to the suppression of plate-
let aggregation, and increased PKA is a direct result of higher cAMP 
concentrations [85]. By inhibiting contraction by inactivating my-
osin light-chain kinase, increased intracellular PKA concentrations 
also have a vasodilatory impact on smooth muscle cells [86].  In the 
presence of calcium and calmodulin, myosin light-chain kinase usu-
ally phosphorylates the myosin light chain, activating myosin to bind 
with actin. Myosin-actin contact is prevented by PKA’s inactivation of 
myosin light-chain kinase, which prevents the production of a smooth 
muscle contraction [87]. Cilostazol has also recently been shown to 
raise HDL cholesterol levels and lower plasma triglyceride levels [88]. 
Although the precise processes of how cilostazol lowers plasma tri-
glycerides and raises HDL levels are currently unknown, its effects on 
lipoproteins are probably due to its suppression of cyclic nucleotide 
phosphodiesterase and precipitous increase in intracellular cAMP. 
There are currently a number of hypothesised ways by which elevated 
cAMP could lead to decreased plasma triglycerides. One explanation 
is that the improved ability of glucagon to decrease VLDL secretion 
has the potential to reduce hepatic triglyceride output (directly or 
indirectly) [89]. As an alternative, elevated cAMP intracellular con-
centrations are shown to encourage the release of lipoprotein lipase 
from rat adipocytes, which may similarly result in decreased plasma 
triglycerides [90].

Mechanism of Action of Inamrinone
A phosphodiesterase-III (PD3) inhibitor is inamrinone. Cyclic 

adenosine monophosphate (cAMP) hydrolysis is reduced when nor-
mal phosphodiesterase-III activity is inhibited, which raises the intra-
cellular quantities of cAMP [91,92]. It is still unclear exactly how this 
increased bioavailability of cyclic adenosine monophosphate raises 
cardiac output. In cardiac myocytes, an increase in cyclic adenosine 
monophosphate concentration may lead to an upregulation of the 
calcium/cyclic adenosine monophosphate/protein kinase A pathway 
[93]. Increased calcium cycling is caused by this pathway’s elevated 
activity acting on particular cellular channels. It increases the action 
potential of the heart muscle and causes an influx of calcium into the 
cardiac myocyte [94,95]. In the end, this makes the heart more capa-
ble of contracting. The increased bioavailability of cyclic adenosine 
monophosphate caused by inamrinone across the vascular network 
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has the opposite effect on the mechanisms of action in the myocardi-
um (Figure 5). In fact, a decrease in the intracellular calcium concen-
tration results from an increase in cyclic adenosine phosphate within 
the vascular smooth muscle, which relaxes the smooth muscle [96]. 
Preload and afterload are decreased as a result of this systemic vas-

odilation, which also lowers total peripheral and pulmonary vascular 
resistance [97]. Increased pulse and stroke volume are the results of 
the subsequent relative ease of blood flow across the vascular net-
work. These vasodilatory and beneficial inotropic effects are crucial 
for treating the potentially fatal heart failure symptoms.

Figure 5: Central illustration of Ivabradine.

Contraindications
a) Patients who are known to be hypersensitive to inamrinone 
should not take the medication, according to the FDA.

b) The FDA lists providing inamrinone as a contraindication if 
the patient has a known hypersensitivity to bisulfites because the 
medication contains sodium metabisulfite.

c) In addition, doctors shouldn’t administer inamrinone to an-
yone who have aortic or pulmonary valvular disease.

d) If the patient is taking disopyramide, it should be given with 
caution because the two medications have the potential to cause 
severe hypotension [98]. 

Enhancing Health Care Team Outcomes
Significant side effects are linked to using inamrinone. However, 

when digoxin, diuretics, and/or vasodilators are unable to increase 
cardiac output, inamrinone is an effective short-term therapy op-
tion. It is crucial that the medical team keep an eye out for any side 
effects of inamrinone and report any abnormalities in electrolytes, 
renal function, hepatic function, blood pressure, heart rate, or ECG. If 
the platelet count falls to less than 150,000 cells/mm3, doctors must 

use even greater caution. To enhance patient outcomes, nursing per-
sonnel should make sure that inamrinone is only used temporarily 
while closely monitoring any negative effects. Reconciliation of pre-
scriptions should be done by pharmacists, who should also alert the 
prescriber if there are any possible drug interactions (Figure 6). An 
interprofessional team approach is necessary for inamrinone therapy, 
which includes cardiologists, doctors, nurses with specialised train-
ing, physician assistants, and pharmacists all collaborating across dis-
ciplines to achieve optimal patient outcomes [98].

Discussion
Only when used during ischemia does ranolazine demonstrate 

positive benefits in cardiomyocytes subjected to ischemia/reperfu-
sion. Its enhancement of calcium management during ischemia helps 
provide this effect. Myocardium is adversely affected by increased HR. 
Although beta-blockers are useful for lowering HR, many patients 
also benefit from other treatments that can lower HR. Additionally, 
some patients may not be able to use beta-blockers because of a con-
traindication or intolerance. Beta-blockers have the potential to lower 
hospital stays and significantly enhance quality of life in HF patients. 
According to several studies, ivabradine is a desirable, efficient, and 
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secure option for HF patients. Ivabradine reduces HR in a manner akin 
to that of beta-blockers. When combined with other antianginal med-
ications like beta-blockers, ivabradine has added advantages (except 
diltiazem and verapamil). Ivabradine is significantly beneficial when 
added to beta-blocker therapy in symptomatic patients. The only 
medication that has so far been shown to consistently treat IC patients 

in clinical studies is cilostazol. Cilostazol has also been demonstrated 
to have pleotropic effects in addition to limb-specific outcomes; how-
ever, clinical trials are required to confirm these effects. The effects of 
cilostazol and inamrinone supervised exercise training in individuals 
with IC to either therapy alone need to be studied as well.

Figure 6: Dosing Approach for Ivabradine: The suggested starting dose and approach for drug titration are shown. Drug titration 
is dependent on clinical response and heart rate. bpm = beats/min.

Conclusion
As per above review on elucidation and possible mechanism of 

action of cardio protective drugs viz. Ranolazine, Ivabradine, Cilosta-
zol and Inamrinone in Ischemic Reperfusion induced cardiac injury 
has been demonastrated but mechanism of action already established 
are not sufficient to which biological mediators like nitric oxide, brad-
ykinin, K+ATPase channels, serotoninergic pathway, adenosine may 
be involved in mechanism of action of above said drugs in detail has 
not been elucidated yet. These mechanisms are of prime importance 
because ischemic preconditioning involves cardio protection by 
above said biological mediators. Full mechanism of action of above 
four drugs are essential in cardioprotective effect in ischemia reper-
fusion injury model. These mediators are essential to elucidate cardio 
protection of above said drugs which leads to new drug discovery of 
cardioprotective drugs.
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