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Abstract
Preeclampsia (PE) is a complex and life-threatening pregnancy complication affecting both mother and fetus. Recent studies 

have shown a possible link between PE and in Vitro Fertilization (IVF) treatments, suggesting that Extracellular Vesicles (EVs) play 
a crucial role in the pathophysiology of PE [1,2]. This review aims to provide a comprehensive understanding of the involvement of 
EVs in the development of PE, as well as their potential role in IVF-related PE. We also explore the potential use of EVs as diagnostic 
biomarkers and therapeutic targets for PE in the context of Assisted Reproductive Technologies (ART).
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Introduction
Preeclampsia is a multifactorial pregnancy complication 

affecting 3-8% of pregnancies worldwide [3], characterized by the 
onset of hypertension and proteinuria after 20 weeks of gestation. 
This disorder severely affects maternal and fetal health, leading to 
preterm birth, Intrauterine Growth Restriction (IUGR), and even 
maternal and fetal death [4]. Despite advances in obstetric care, 
the etiology and pathophysiology of PE remain elusive, making 
early diagnosis and effective treatments challenging. In recent 
years, Assisted Reproductive Technologies (ART), Including in 
Vitro Fertilization (IVF), have increased dramatically. Several 
studies have reported a higher incidence of PE among women 
who underwent IVF treatments [5]. This association suggests 
a potential role of Extracellular Vesicles (EVs) in developing 
PE, as they have been identified as crucial mediators of cell-to-
cell communication in various physiological and pathological 
processes, including pregnancy [6]. Recent advances in Assisted 
Reproductive Technologies (ART), such as in Vitro Fertilization 
(IVF), have increased success rates for infertile couples. However, 
these technologies have also been associated with a higher risk  

 

of pregnancy complications, including Preeclampsia (PE) [7]. The 
involvement of Extracellular Vesicles (EVs) in the Pathogenesis of 
PE, particularly in the context of IVF, warrants further investigation 
to better understand this relationship and identify potential 
diagnostic and therapeutic strategies for PE. This review provides 
a comprehensive overview of the current knowledge on the role of 
EVs in PE, with a particular focus on their potential involvement in 
IVF-related PE, and discusses future perspectives and challenges in 
the field. This review will focus on the role of EVs in the development 
of PE, particularly in the context of IVF, and discuss the potential 
use of EVs as diagnostic biomarkers and therapeutic targets for PE.

Preeclampsia: An Overview
Pathophysiology and Risk Factors

The Pathophysiology of PE is complex and multifactorial, 
involving genetic, immunological, and environmental factors 
[8]. The most widely accepted theory involves abnormal 
placentation, leading to placental ischemia and the subsequent 
release of soluble factors into the maternal circulation, promoting 
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endothelial dysfunction, inflammation, and, ultimately, the clinical 
manifestations of PE [9]. Key risk factors for PE include nulliparity, 
advanced maternal age, obesity, pre-existing medical conditions 
(e.g., hypertension, diabetes, renal disease), and history of PE 
in previous pregnancies [10]. Additionally, IVF treatments have 
emerged as a potential risk factor for developing PE [11].

Clinical Presentation and Diagnosis

PE is a heterogeneous disorder with a wide range of clinical 
presentations, from mild to severe [12]. The main clinical features 
include new-onset hypertension and proteinuria after 20 weeks 
of gestation [13]. Other symptoms include edema, headache, 
visual disturbances, and epigastric pain [14]. The diagnosis of 
PE is primarily based on clinical and laboratory findings [15]. 
However, due to the lack of specific biomarkers, early diagnosis 
and differentiation from other hypertensive disorders of pregnancy 
remain challenging [16].

Management and Treatment

The management of PE primarily focuses on controlling 
maternal blood pressure, preventing seizures (eclampsia), and 
monitoring fetal well-being [17]. Antihypertensive medications 
are commonly used to manage blood pressure, while magnesium 
sulfate is administered to prevent seizures [18]. Fetal surveillance, 
including ultrasound and non-stress tests, is essential for 
monitoring fetal well-being and guiding delivery timing [19]. 
In severe cases, early delivery may be necessary to protect the 
health of the mother and the fetus [20]. However, this can lead to 
complications associated with preterm birth, such as respiratory 
distress syndrome and neonatal intensive care unit admission [2].

Prevention Strategies

Current preventive strategies for PE include the administration 
of low-dose aspirin for women at high risk of developing the 
disorder [21]. Aspirin has been shown to reduce the risk of PE by 10-
20% when initiated before 16 weeks of gestation [22]. Identifying 
specific risk factors, such as those related to IVF, could help tailor 
prevention strategies for individual patients and improve outcomes.

Extracellular Vesicles: Biogenesis, Classification, 
and Functions
Biogenesis and Classification

Extracellular vesicles are lipid bilayer-enclosed particles 
released by cells into the extracellular environment [23]. They 
are formed by the inward budding of the endosomal membrane 
(exosomes) or the outward budding of the plasma membrane 
(microvesicles) [24]. EVs can be classified into three main categories 
based on their size, biogenesis, and molecular markers: exosomes 
(30-150 nm), microvesicles (100-1000 nm), and apoptotic bodies 
(500-2000 nm) [25].

Functions of Extracellular Vesicles

EVs have diverse functions in intercellular communication, 
immune modulation, and tissue homeostasis [26]. They can carry 

various bioactive molecules, including proteins, lipids, and nucleic 
acids, which can be transferred to recipient cells, influencing their 
function [27]. In the context of pregnancy, EVs have been implicated 
in processes such as placental development, maternal-fetal immune 
tolerance, and the maintenance of pregnancy [28].

Extracellular Vesicle Cargo

The cargo of EVs consists of various bioactive molecules, 
including proteins, lipids, and nucleic acids, which can be 
transferred to recipient cells and modulate their function [29]. 
The cargo composition is determined by the cell of origin, the 
cellular state, and the physiological or pathological context [30]. 
In pregnancy, EV cargo can include placental proteins, hormones, 
and regulatory RNAs, which may contribute to pregnancy-related 
processes and complications, such as PE [31].

Isolation and Characterization of Extracellular Vesicles

The isolation and characterization of EVs from biological 
fluids, such as blood and urine, have been challenging due to their 
small size and heterogeneous nature [32]. Several techniques have 
been developed for EV isolation, including ultracentrifugation, 
size-exclusion chromatography, and immunoaffinity capture [33]. 
Each method has advantages and limitations, and the choice of 
technique depends on the specific research question and the 
intended downstream analysis [34]. Following isolation, EVs can 
be characterized by their size, morphology, and molecular markers 
using nanoparticle tracking analysis, transmission electron 
microscopy, and flow cytometry [6].

Extracellular Vesicles in Female Reproductive 
System: Origin of Releases
In the Vagina

These vesicles, known as vaginosomes, have been demonstrated 
to affect sperm capacitation and acrosome response in mice, 
similar to EVs reported in other female biofluids [35]. There is some 
evidence that extracellular RNAs present in the vagina, notably 
miR-186-5p, can guard against HIV-1 infection [36].

In the Uterus

Uterosomes are extracellular vesicles that can be found in the 
uterus’ luminal fluid [37]. Uterosome-related proteins, which are 
secreted by endometrial epithelial cells, appear to be engaged 
in crucial embryo-implantation pathways, indicating that these 
vesicles are vital in early pregnancy [38]. In addition to being 
secreted by endometrial cells, uterosomes have been demonstrated 
to be taken up by endometrial epithelial cells and profoundly 
change their transcriptome[39].

In the Ovaries

The fluid surrounding an expanding oocyte, the cell in an ovary 
that can develop into an ovum, is known as Follicular Fluid (FF). 
Blood plasma components that penetrate the “blood-follicle barrier” 
and the secretory activity of granulosa and thecal cells contribute 
to producing follicular fluid [40]. The Cumulus-Oocyte Complex 
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(COC) grows just before ovulation, enabling the egg to complete 
meiotic maturation. This is likely the result of communication 
between granulosa cells and the COC. Many studies show that the 
EVs released from the FF can mediate several mechanisms, such 
as the transforming growth factor-β (TGF-β) pathway [41]. COC 
expansion mechanism can be mediated by the miRNAs released 
within these EVs; human-derived EVs contain miRNAs that target 
genes involved in follicular maturation inhibition and meiosis 
resume [42, 43]. On the other hand, other studies suggest that 
differences in the impact of EVs may be allocated to variations in 
their molecular cargo at different periods of the menstrual cycle 
[44, 45]. EVs have also been demonstrated to be taken up by and 
modify the transcriptome of epithelial cells that line the fallopian 
tubes, resulting in the expression of genes that increase the chance 
of fertilization and embryo development [46].

Role of Extracellular Vesicles in Normal Pregnancies
Fertilization and EVs

The female reproductive system undergoes sperm capacitation, 
also called sperm activation, which starts the signaling pathways 
required for the sperm to penetrate the several layers of the 
female egg. Sperm cells receive plasma membrane Ca2+-ATPase 
4a (PMCA4a) and PMCA1 from oviductosomes, uterosomes, and 
vagisomes during the sperm capacitation process [47,48]. EVs 
released from the oviduct and uterus have also been demonstrated 
to transmit tyrosine phosphorylated proteins to sperm, which 
may alter capacitation [37,47]. In Vitro Fertilization (IVF) relies 
on adding sperm to a collected egg; however, the oocyte must be 
completely developed before fertilization. It has been demonstrated 
that incubating retrieved oocytes with follicular fluid-derived EVs 
and/or oviductosomes enhances oocyte maturation and embryonic 
development [49,50]. 

Implantation, Maternal-Fetal Crosstalk and EVs

Following fertilization, the conceptus trophectoderm releases 
EVs into the uterine fluid, and these vesicles are thought to help 
facilitate communication between the endometrial lining and the 
fertilized egg before implantation [51,52]. EVs are a crucial mediator 
of the bidirectional connection between the endometrial and 
trophoblast cells, allowing for the transfer of vital cargo to promote 
embryo implantation, such as angiogenic and proliferative factors 

[53]. Recent data reveals that lower-grade embryos produce more 
EVs than higher-quality embryos, and these EVs are often smaller in 
diameter, suggesting that the amount and size of EVs released from 
IVF embryos may be a sign of embryo quality [54-56]. Co-culturing 
IVF embryos generates a microenvironment that utilizes paracrine 
communication, resulting in better embryonic development than 
independently cultured embryos [57]. These EVs, which enhance 
the developmental competence of co-cultured embryos and include 
the pluripotency genes Nanog, Klf4, Oct4, Sox2, and c-Myc, may be 
partially responsible for this phenomenon [58]. Early gestation 
is a critical time for cellular communication at the maternal-fetal 
interface, which controls pregnancy outcomes. The endometrium 
and growing conceptus may rapidly exchange biomolecules when 
placentation is successful. Besides, previous data indicate that 
EVs are essential in modifying maternal immunity and enabling 
immunological tolerance to fetal antigens, which lowers the chance 
of rejection/abortion [59]. When EVs are floating freely in the 
mother’s bloodstream, the proteins carried by trophoblastic EVs 
may perform a dual function by inhibiting complement activation 
and controlling the activity of maternal T cells, which could 
otherwise result in unfavorable immune reactions to paternally 
derived antigens expressed by the placenta [60].

Placentation And Evs

In humans, between weeks 10 and 12, the placenta, which 
sustains the fetus for several months and serves as the primary 
transporter of oxygen and nutrients for the developing fetus, 
connects to the mother’s uterus by remodeling the spiral 
arteries along the uterine wall. This remodeling is facilitated by 
extravillous cytotrophoblasts [61]. Within this context, extravillous 
trophoblasts have been demonstrated to migrate into the decidua 
of the uterus using EVs produced from cytotrophoblasts [62]. It 
has been shown that EVs generated from the placenta express the 
immunomodulatory proteins GLA-G5, B7-H1, and B7-H3, which 
can influence T cell responses and may be related to maternal-fetal 
tolerance [63]. Recent research reveals that placental-derived EVs 
interact with maternal lung and liver immune cells through surface 
integrins [64]. Bioengineered EVs were injected into pregnant mice, 
and the results revealed EV trafficking to fetal cells, indicating that 
maternal EVs may cross the placenta and affect the baby [65] (Table 
1). 

Table 1: EVs In Normal Pregnancies and EVs In Complicated Pregnancies (Preeclampsia).

EVs In Normal Pregnancies

EV Type - Source Effect Reference

Placental Exoxomes Carry active TNF superfamily members as immune suppressive Stenqvist et al., 2013

Trophoblastic EVs Players in immune tolerance Kovacs et al., 2019

Macrophage Derived Exosomes Increasing the release of pro-inflammatory cytokines Holder et al. 2016

Placental Trophoblasts Derived Exoxomes Shielding against viral infection during pregnancy Delorme-Axford et al.,2013

Maternal and Umbilical Serum Exosomes Enhance tube formation abilities Jia et al., 2018

Placental Exoxomes Engage in the changes of insulin sensitivity in normal pregnancies Nair et al., 2018
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Exosomes from Amnion Epithelial Cells Response to oxidative stress in delivery Sheller et al., 2016

Exosomes from Foetal Cord Arterial Blood Plays a role in birth timing determination Ithier et al., 2019

Exoxomes from Endometrial Epithelium Successful embryo implantation during pregnancy Nair et al., 2021

Human Endometrial Epithelial Cells-de-
rived Exosomes Enhanced focal adhesion kinase signaling Greening et al., 2016

Placental Exoxomes Reflects fetal growth and it may be a useful indicator of placental 
function Miranda et al.,2018

Fetal-derived Exosomes Travel to the maternal side to potentially transmit signals to the 
uterus and cervix Menon et al., 2017

EVs In Complicated Pregnancies (Preeclampsia)

EV Type - Source Effect Reference

EVs Derived from Injured Placenta Induce PE-like symptoms like hypertension and proteinuria in mice 
by inducing endothelial injury Han et al., 2019

Plasma Exosomes Was 1.47-fold and 1.45-fold higher, respectively, compared with 
healthy controls Li et al., 2020

Exosome Isolated from Women Pre-
eclampsia Implicated in endothelial cell dysfunction in obese children Choi et al., 2013

Total Exosomes and Placental Exosomes Concentration of exosomes was higher in PE than normal pregnan-
cies matched by gestational age Salomon et al., 2017

Exosomes From Preeclampsia
Contribute to the dissemination of endothelial damage by seques-

tering the free vascular endothelial growth factor (VEGF) in the 
maternal circulation

Patton et al., 2015

EVs Released by Placental Syncytiotro-
phoblasts

Carry neprilysin, which cleaves vasopeptides, thus contributing to 
the establishment of hypertension, a hallmark of PE Gill et al, 2019

EVs Released by Placental Syncytiotro-
phoblasts

Endothelial dysfunction underlying the maternal complications that 
lead to vascular constriction in PE Knight et al., 1998

PE-derived Exosomes Involved in vascular dysfunction due to their abundant sFlt-1 and 
sEng contents. Ermini et al., 2017

Role of Extracellular Vesicles in Preeclampsia
Altered Extracellular Vesicle Profile in Preeclampsia

Figure 1: Extracellular Vesicles_Preeclampsia.
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Several studies have reported an altered EV profile in the 
maternal circulation of women with PE compared to normotensive 
pregnant women [31]. Specifically, women with PE have 
increased total EVs, placenta-derived EVs, and EVs containing pro-
inflammatory and anti-angiogenic factors [66] (Figure 1). 

Placental Extracellular Vesicles in Preeclampsia

Placenta-derived EVs play a crucial role in the pathophysiology 
of PE [67]. They carry various bioactive molecules that can 
contribute to endothelial dysfunction and systemic inflammation 
[2]. In PE, the placenta releases more EVs, containing factors such 
as soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin 
(sEng), which are known to induce maternal vascular dysfunction 
[18].

Potential Mechanisms Linking Extracellular Vesicles to 
Preeclampsia Pathogenesis

EVs have been implicated in several pathways related to the 
pathogenesis of PE, including:

a.	 Impaired trophoblast invasion and spiral artery 
remodeling: Placental EVs can modulate the invasion of Extravillous 
Trophoblasts (EVTs) into the maternal decidua and spiral arteries 
[68]. In PE, EVs may carry factors that inhibit trophoblast invasion 
and impair spiral artery remodeling, leading to placental ischemia 
[69].

b.	 Endothelial dysfunction: EVs containing anti-angiogenic 
factors, such as sFlt-1 and sEng, can disrupt the balance of 
angiogenic and anti-angiogenic factors, contributing to endothelial 
dysfunction in PE [30].

c.	 Inflammation: Pro-inflammatory factors carried 
by EVs can promote systemic inflammation, which further 
exacerbates endothelial dysfunction and contributes to the clinical 
manifestations of PE [22].

Extracellular Vesicles in the Maternal-Fetal Interface

The maternal-fetal interface is critical for maintaining 
pregnancy and ensuring proper fetal development [26]. EVs have 
been implicated in regulating maternal-fetal communication and 
immune tolerance at this interface [70]. In PE, the altered EV profile 
at the maternal-fetal interface may contribute to the breakdown of 
immune tolerance and the subsequent development of the disorder 
[6].

Long-term Consequences of Preeclampsia and 
Extracellular Vesicles

Preeclampsia has been associated with long-term health 
consequences for both the mother and the offspring [27]. Women 
who have experienced PE are at an increased risk of developing 
cardiovascular diseases later in life, such as hypertension, ischemic 
heart disease, and stroke [71]. Offspring born to mothers with PE 
are at a higher risk of developing metabolic and cardiovascular 
disorders, including hypertension, diabetes, and obesity [72]. The 
role of EVs in mediating these long-term consequences is not yet 

fully understood, but the altered EV profile during pregnancy may 
have lasting effects on maternal and offspring health [73].

Extracellular Vesicles in IVF and Preeclampsia
Increased Incidence of Preeclampsia in IVF Pregnancies

Several studies have reported an increased risk of PE among 
women who conceived through IVF [74]. The reasons for this 
increased risk are partially clear. However, it has been suggested 
that IVF-related factors may contribute to the development of PE 
[17].

Potential Role of Extracellular Vesicles in IVF-Related 
Preeclampsia

The altered EV profile observed in PE may also be present in IVF 
pregnancies, suggesting a potential role of EVs in the development 
of IVF-related PE [75]. Further research is needed to determine this 
association’s specific factors and mechanisms.

Extracellular Vesicles in Ovarian Stimulation and 
Embryo Culture

Ovarian stimulation and embryo culture are essential 
components of IVF treatments that may influence the EV profile 
in maternal circulation [76]. Ovarian stimulation with exogenous 
hormones can alter the local EV profile in the follicular fluid, 
which may affect oocyte quality and embryo development [77]. 
Additionally, embryo culture conditions, including specific growth 
factors and cytokines, can influence the EVs released by the 
developing embryo and the surrounding environment [78]. The 
potential impact of these IVF-related factors on the EV profile and 
the subsequent risk of PE warrants further investigation.

Diagnostic and Therapeutic Potential of 
Extracellular Vesicles in Preeclampsia

Extracellular Vesicles as Diagnostic Biomarkers

Given the altered EV profile in PE, EVs have been proposed 
as potential diagnostic biomarkers for early disorder detection 
[79]. Studies have shown that specific placenta-derived EVs and 
EV-associated factors such as sFl t-1 and sEng can be detected in 
maternal circulation before clinical symptoms, suggesting their 
potential use in early diagnosis and risk stratification of PE [80]. 
However, further research is needed to validate these findings 
and establish standardized EV isolation and analysis methods in a 
clinical setting.

Extracellular Vesicles as Therapeutic Targets
The involvement of EVs in the pathophysiology of PE also 

presents opportunities for therapeutic intervention. Potential 
strategies include:

a.	 Modulation of EV release: Targeting the molecular 
mechanisms responsible for the release of placenta-derived 
EVs could help to reduce the number of harmful EVs in maternal 
circulation [80].
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b.	 Inhibition of EV uptake: Blocking the uptake of placenta-
derived EVs by maternal cells may prevent the deleterious effects of 
their bioactive cargo on maternal vascular function [31].

c.	 Neutralization of EV cargo: Therapeutic agents, such as 
antibodies or small molecules, could be developed to neutralize the 
pro-inflammatory and anti-angiogenic factors carried by placenta-
derived EVs in PE [81].

d.	 Replacement of defective EVs: Administration of 
exogenous EVs with a “healthy” cargo may help to restore the 
balance of angiogenic and anti-angiogenic factors and promote 
proper placental function [82].

Challenges and Limitations of Extracellular Vesicle-
Based Diagnostics and Therapeutics

Despite the promising potential of EVs as diagnostic 
biomarkers and therapeutic targets for PE, several challenges 
and limitations must be addressed. One major challenge is EV 
population heterogeneity, making it difficult to identify specific 
EV subpopulations and their molecular signatures associated 
with PE [83]. Additionally, the need for standardized EV isolation, 
characterization, and quantification methods presents a significant 
obstacle to the reproducibility and comparability of findings across 
different studies [84]. Furthermore, the safety and efficacy of EV-
based therapeutics must be carefully evaluated in preclinical and 
clinical studies before their implementation in clinical practice [85].

Future Perspectives and Challenges
The study of extracellular vesicles in the context of 

preeclampsia and IVF has opened new avenues for understanding 
the pathophysiology of this complex disorder and the potential 
links between assisted reproductive technologies and adverse 
pregnancy outcomes. However, several challenges remain to 
overcome before EVs can be fully harnessed for diagnostic and 
therapeutic purposes. Firstly, standardization of EV isolation, 
characterization, and quantification methods is crucial to ensure 
the reproducibility and comparability of findings across different 
studies [86]. Secondly, identifying specific EV subpopulations and 
their molecular signatures in preeclampsia will be essential for 
developing targeted diagnostic and therapeutic strategies [87]. 
Translating EV-based interventions into clinical practice will 
require extensive preclinical and clinical evaluation to ensure their 
safety and efficacy [86]. Advances in EV research will be crucial for 
overcoming the current challenges associated with the study of 
EVs in PE and IVF [88]. Moreover, interdisciplinary collaborations 
between reproductive medicine specialists, EV researchers, and 
bioengineers will be essential for translating emerging insights 
into clinically relevant diagnostic and therapeutic applications 
[89]. Finally, further research is needed to determine the long-term 
consequences of altered EV profiles in PE and IVF on maternal and 
offspring health and the potential benefits of early intervention 
strategies based on EV biology [90].

Conclusion
Extracellular vesicles have emerged as essential players in 

the pathophysiology of preeclampsia, particularly in IVF. The 
altered EV profile observed in women with PE and their roles in 
placental development, endothelial dysfunction, and inflammation 
suggests that EVs may serve as promising diagnostic biomarkers 
and therapeutic targets for this complex disorder. Further research 
is needed to elucidate the specific mechanisms linking EVs to 
preeclampsia and to overcome the challenges associated with their 
clinical application [7]. Extracellular vesicles have emerged as 
critical players in the pathophysiology of preeclampsia, particularly 
in IVF. The altered EV profile observed in women with PE and 
their roles in placental development, endothelial dysfunction, and 
inflammation suggests that EVs may serve as promising diagnostic 
biomarkers and therapeutic targets for this complex disorder. 
Further research is needed to elucidate the specific mechanisms 
linking EVs to preeclampsia, to identify the factors and pathways 
involved in IVF-related PE, and to overcome the challenges 
associated with the clinical application of EVs in the diagnosis and 
treatment of PE [91].
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