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Introduction
In the recent years, a great deal of interest has been gained to 

fluids applications. Some fluids not easy to expressed by particular 
constitutive relationship between shear rates and stress and 
which is totally different than the viscous fluids [1,2]. These fluids 
including many home items namely, toiletries, paints, cosmetics 
certain oils, shampoo, jams, soups etc. have different features and 
are denoted by non-Newtonian fluids. In general, the categorization 
of non-Newtonian fluid models is given under three class which 
are named the integral, differential, and rate types [3-6]. In the 
present study, the main interest is to discuss the heat transfer 
flow of hydrodynamic viscous fluid over a flat plate in a uniform 
stream of fluid with dissipation effect. The most phenomena in the 
field of engineering and science that occur is nonlinear. With this 
nonlinearity the equations become more difficult to handle and 
solve. Some of these nonlinear equations can be solved by using 
approximate analytical methods such as Homotopy analysis method 
(HAM) proposed by liao S [7,8], Homotopy Perturbation method 
(HPM) it was found by Ji-Huan [9] and Adomain decomposition 
method (ADM) Q Esmaili et al. [10], Makinde OD et al. [11] and 
Makinde OD [12]. 

However, some of these equations are solved via traditional 
numerical techniques such as finite difference method,shooting  

 
method and Keller box method, Runge-Kutta. Recently some studies 
have presented a new method called Successive Linearization 
Method (SLM). This method has been applied successfully in many 
nonlinear problems in sciences and engineering, such as the MHD 
flows of non- Newtonian fluids and heat transfer over a stretching 
sheet [13], viscoelastic squeezing flow between two parallel plates 
[14], two dimensional laminar flow between two moving porous 
walls [15] and convective heat transfer for boundary layer with 
pressure gradient [16,17]. Therefore, the effectiveness, validity, 
accuracy and flexibility of the SLM are verified among of all these 
successful applications. Presently a new investigation on the heat 
transfer flow of hydrodynamic viscous fluid over a flat plate in a 
uniform stream of fluid with dissipation effect is discussed. The 
numerical solution to the resulting nonlinear problem is computed 
by using the SLM approach. The embedded flow parameters are 
discussed and illustrated graphically.

Mathematical formulation of the problem

The governing equations are 
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the thermal diffusivity,

k the fluid thermal conductivity, cρ  the fluid capacity heat and 
cp the specific heat. The relevant boundary conditions are defined 
as 

0, ( )wu T T x= =  at y=0

,u U T T∞= =  at y →∞

Where ,wT T∞  are constants. Introducing the following 
dimensionless variables 
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Utilizing equation (6), equation (1) is satisfied automatically 
and equations (2) and (3) characterize to the following problems 
statement 

1''' '' 0
2

f ff+ =    (7)

21'' ' Pr ( ") Pr ' 0
2

Ec f fθ θ η θ+ + − =   (8)

The related boundary conditions

' 0, 0, 1f f θ= = =  at 0η =  (9)

'( ) 1, ( ) 0f θ∞ = ∞ =   (10)

Solution of the problem 
Here successive linearization method (SLM) [14-16] is 

implemented to obtain the numerical solutions for nonlinear 
system (8) and (10) corresponding to the boundary condition Eq. 
(11) – (13) (Table 1). The convergence for numerical values of 

"(0)f  and '(0)θ− for different order of approximation when Ec = 
0.01, Pr =1 and n =1.00 (Table 1).

Table 1: The convergence for numerical values of "(0)f  and   
'(0)θ−  for different order of approximation when Ec=0.01, Pr 

1 and 1.00 Ec n=1.00.

Order of

approximation  "(0)f '(0)θ−

1 0.3612452754 0.5821272282

5 0.3320573366 0.5412124295

10 0.3320573366 0.5412124295

20 0.3320573365 0.5412124295

30 0.3320573365 0.5412124295

50 0.3320573365 0.5412124295

The numerical values of ( )f η  and '( )f η when, n =1, Pr =1 for 
Ec= 0.01. (Table 2).

Table 2: The numerical values of ( )f η  and '( )f η  when, n =1, 
Pr =1 for Ec = 0.01.

Ec  η ( )f η '( )f η

0.1

0 0 0

0.1 0.001648 0.033205

0.3 0.014941 0.099599

0.5 0.041467 0.165884

1 0.165539 0.329774

2 0.649981 0.629745

3 1.396860 0.846097

4 2.305718 0.955494

5 3.283272 0.991540

The numerical values of ( )θ η  and '( )θ η− when, n =1, Pr =1 for 
Ec =0.01 (Table 3).

Table 3: The numerical values of ( )θ η  and '( )θ η−  when, n =1, 
Pr =1 for Ec =0.01.

Ec  η ( )θ η '( )θ η−

0.01

0 1.000000 0.541212

0.1 0.945928 0.539719

0.3 0.838986 0.527814

0.5 0.735487 0.505875

1 0.502477 0.420608

2 0.186143 0.214775

3 0.049496 0.074145

4 0.009246 0.017244

5 0.001176 0.002656

Comparison of numerical values of ( )f η  with Ref: [16] when, 
n= Ec = 0, Pr =1 (Table 4).

Table 4: Comparison of numerical values of ( )f η  with Ref: [16] 
when, n= Ec = 0, Pr =1.

η Ref: [16] Present work

0 0 0

0.2 0.066408 0.066407

0.4 0.132764 0.132764

0.6 0.198937 0.198940

0.8 0.264709 0.264707

1 0.329780 0.329774

1.2 0.393776 0.393768

1.4 0.456262 0.456265

1.6 0.516757 0.516783

This section concerns with the graphical illustrations obtained 
by using successive linearization method for velocity, temperature 
profiles. These profiles show the variations of embedded flow 
parameters in the solution expressions for heat transfer analysis 
for an incompressible viscous fluid. The physical interpretation of 
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the problem has been discussed in Figures 1 – 4. These figures are 
plotted in order to illustrate such variations. Here the graphs have 
been determined for the heat transfer flow of steady Newtonian 
fluid. Figures 1 & 2 shows the effects of the parameter on the 
velocity profile for '( )f η  and ( )θ η when Ec, Pr are fixed. It is worth 
noticing that by increasing the parameter η  reveals that buoyancy 
because of augments of gravity which boosts on the velocity. Figure 
3 is sketched for the variation of Prandtl number Pr on ( )θ η . It 
is noted that for lager Pr ,the thermal field is lower and then this 
reduce the temperature. In fact law Prandtl number Pr assist fluid 
with higher thermal conductivity and this create thicker thermal 
boundary layer than that for lager Pr. Finally, Figure 4 shows the 
effect of Ec on velocity and temperature profiles over the plate, and 
we note that by increasing in Ec parameter is seen that the effect is 
very big for the temperature.

Figure 1: Effects of n and '( )f η .

Figure 2: Effects of n and ( )θ η  .

Figure 3: Effects of Ec for ( )θ η .

Figure 4: Effects of Pr for ( )θ η .

Conclusion
In this research, the problem of heat transfer of an 

incompressible viscous fluid over flat pate is solved numerically. 
The numerical solutions are well established by SLM. The influence 
of various parameters is shown through different graphs. The 
present results have been tested and compared with the available 
published results in [16], in a limiting situation shown in tables v 
and an excellent agreement is found [17].
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