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Abstract
Recently invented high-throughput technique called single-cell RNA-sequencing enables the access of the cell transcriptional 

profile at the single cell level, which can assist the cell type identification. In order to perform the cell type identification, cell types 
in the gene expression dataset need to be clustered into several clusters based on similarity metrics between cell types, and each 
cluster is expected to contain the identical cell type so that the marker genes can be used later for identifying the common cell type 
for each cluster. Hence, the quality of clustering is essential for ensuring the accuracy of cell type identification. This report aims 
to verify that if applying the clustering based on similarity matrix of Pearson’s correlation on dataset without PCA will outperform 
similarity matrix of Euclidean distance on dataset without PCA, Pearson’s correlation on dataset with PCA, and Euclidean distance 
on dataset with PCA. To achieve this aim, 11 datasets have been applied PCA, and then k-means clustering has been applied on these 
11 datasets before and after applying PCA, which results in 4 clustering results for each dataset. The ARI values for each clustering 
result are calculated to quantify its concordance level with predefined cell-type annotation, and 3 pairwise Wilcoxon rank-sum tests 
have been performed to verify the statistical significance of the differences among these ARI values. This results that the clustering 
method of Pearson’s correlation without PCA outperforms the clustering method of Euclidean distance without PCA, while it has 
similar performance as the clustering methods of Euclidean distance and Pearson’s correlation with PCA.

Introduction
Due to the significant functional consequences of the differenc-

es between cells, a method called single-cell RNA-sequencing was 
recently devel-oped in the field of bioinformatics to assess the cell 
transcriptional profile at the single cell level [1]. It is useful for as-
sessing the variations amo-ng individual cells in order to identify 
the cell types, and it is famous for the capability of iden-tifying the 
mutations in individual cells and the rare cell populations which 
are lack in the tradit-ional bulk RNA-sequencing [2] Historically, the 
first publication of single-cell RNA-sequencing was in 2009, and it 
was applied under the situation of limited biological materials with 
a small size of single-cell RNA-sequencing libraries which were 
generated in tubes manually [2,3]. In 2011, the size of the sequenc-
ing libraries had been significantly incr-eased with the invention  

 
of single-cell tagged reverse transcription sequencing [2]. In 2014, 
the first commercial platform that made the single cell isolation and 
library generation a two-step process was available, which result-
ed in significant time and labor reductions [2]. Soon, another two 
more efficient library preparation platforms called Drop-seq and 
Seq-Well were invented in 2015 and 2017, respectively. Spe-cial-
ly, the latter one is first portable library prep-aration platform [2]. 
The framework of single-cell RNA-sequen-cing starts with the dis-
sociation of a group of single cells from a tissue sample. Secondly, a 
single cell will be isolated from this cell group, and the mRNA will 
be extracted from this single cell. Next, the mRNA will be converted 
into cD-NA through the reverse transcription. In order to prepare 
the sequencing library, an amplified cD-NA will be produced. Fi-
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nally, a gene expression dataset will be generated after performing 
the sequencing [1]. Table 1 shows a small subset of a typical gene 
expression dataset. Though the sizes of different gene expressi-on 
datasets vary, a common size will be around 50000 rows and 350 
columns. Each row in the dataset represents a gene, and each col-
umn represents a cell type. All genes within a dataset are unique, 
while cell types are repetitive. For each dataset, the number of dis-
tinct cell types are commonly less than 10. Originally, the values in 
the dataset are integers, which represent the counts of RNA tran-
scribed from the correspond-ing gene in each cell type with the unit 
of counts per million [4]. Because of the different total nu-mber of 
transcriptions in each cell type, which will result in relative bias dis-
tance matrix calcul ations in later cell-type clustering process, these 
values are normalized based on the number of transcriptions in the 
corresponding cell type [5]. Hence, values in the current dataset are 
normali-zed versions, representing the expression level of the cor-
responding gene in each cell type. In order to achieve the goal of 
cell type identification, these cell types should be cluster-ed into 
several groups. 

Under the ideal situation, all cell types in one group should be 
identical. Hence, the quality of clustering is essential. However, due 
to the high dimensionality of the gene expression dataset, cluster-
ing datasets with or without dimension reduction might result in 
different clusters [6]. Moreover, different simila-rity metrics used 
for clustering might also result in different clusters. Two common 
similarity metrics are distance-based metrics and correlat-ion-
based metrics [4]. Hence, by using the princ-ipal component anal-
ysis, Euclidean distance, an-d Pearson’s correlation as representa-
tives of dimension reduction method, distance-based metrics, and 
correlation-based metrics, respecti-vely, the aim of this report is to 
discover that during the clustering process, if applying Pearso-n’s 
correlation on dataset without principal com ponent analysis will 
outperform applying Euclid-ean distance on dataset without prin-
cipal compo-nent analysis and applying Pearson’s correlation and 
Euclidean distance on dataset with principal component analysis. 
Since previous studies have investigated the impact of different 
similarity metrics on single-cell RNA-sequencing data clustering 
and reveal-ed that Pearson’s correlation outperforms other simi-
larity metrics [4], it is worth to investigate that if this result is still 
tenable after applying principal component analysis on the dataset. 
Mo-reover, though there are previous studies of impacts of different 
similarity metrics on clust-ering and the mathematical relationship 
between principal component analysis and a common clustering 
algorithm, k-means clustering [6], very few of them discuss the im-
pact of different combinations of similarity metrics and existence 
of principal component analysis on gene expression data cluster-
ing, which will be the main Purpose of this report, and it is worth 
studied.

Methods
In order to be statistically significant on the results, 11 datasets 

are analyzed. Each dataset either contains cell types of information 

from humans or mice.

Data transformation and cleaning
For each dataset, the log2 transformation is applied first to re-

move outliers and make the dist-ributions of these data approxi-
mately normal in order to ensure the later clustering accuracy. 
Moreover, due to the large amount of data values of 0 in the data-
set, these data are increased by 1 before the log2 transformation 
[4]. Next, a single-cell data specific filtering algorithm called Opti-
mal Gene Filtering for Single-Cell data (OGFSC) is applied on the 
transformed dataset. Because of the low RNA concentrations from 
individual cells, these single-cell data are commonly accompanied 
by extremely high technical noise which should be removed. This 
algorithm will construct a thresholding curve which is capable to 
select a subset of genes that can best characterize the data with 
the minimum size. This goal is achieved by constructing the curve 
that can best separate the biological noise from the technical noise, 
which results that the data information, the biological noise, will be 
well preserved while the level of technical noise is minimized [7].

Principal component analysis
Principal component analysis (PCA) is a common-n unsuper-

vised learning algorithm for dataset’s dimension reduction [5]. In 
order to test the impact of PCA on cell types clustering, PCA will 
be applied to each dataset to derive a 10-dimentional dataset from 
the original large dataset such as dataset with dimension of 50000 
x 350. In this case, each row of these datasets will be a principal 
component, and there are 10 rows in total. Each of these principal 
components is a linear combination of all original genes. These 10 
principal components can account for the vast majority of varia-
tions in the dataset. After applying PCA, there are 22 datasets in 
total, which contain the original 11 datasets and their PCA-version 
datasets.

Similarity metrics
Pearson’s correlation and Euclidean distance are two common-

ly used similarity metrics, which are two typical representatives of 
correlation-based metrics and distance-based metrics. They are 
used to calculate the distance between two values, which will be 
used as the judgement for clusterin-g since values with shortest 
distances will be part-itioned together. These two similarity met-
rics are calculated as following: Pearson’s correlation coefficient,

𝑑𝑖𝑗=1−Σ(𝑥𝑖𝑔−𝑥̅𝑖)(𝑥𝑗𝑔−𝑥̅𝑗)𝐺𝑔=1√Σ(𝑥𝑖𝑔−𝑥̅𝑖)2𝐺𝑔=1√Σ(𝑥𝑗𝑔−
𝑥̅𝑗)2𝐺𝑔=1;

Euclidean distance,

𝑑𝑖𝑗= √Σ(𝑥𝑖𝑔−𝑥𝑗𝑔)2𝐺𝑔=1,

where 𝑥𝑖𝑔 and 𝑥𝑗𝑔 are the expression level of a  gene 𝑔=1,…,𝐺 in 
cell 𝑖=1,…,𝑁 and cell 𝑗=1,…,𝑁,  which are the data values in the data-
set, and 𝐺 and 𝑁 are the number of genes and cells in the dataset, 
which are the number of rows and columns in the dataset, respec-
tively. For a distance matrix 𝐷=(𝑑𝑖𝑗), the element 𝑑𝑖𝑗 represents the 
distance between cell 𝑖 and cell 𝑗  [4].
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K-means clustering
Since these datasets all have known cell-type labels, to assess 

the impact of different similarity metrics on the clustering perfor-
mance, for each of these 22 datasets, the k-means clustering with 
similarity metrics of Pearson’s correlation and Euclidean distance 
will be applied to partition these cell types into several groups, and 
these resulted clusters will be compared with the original known 
cell-type labels. This algorithm starts by randomly selecting k data 
values, which are the number of distinct cell types in each dataset. 
These k data values will be treated as the representatives of k clus-
ters, and the distance between the remaining data values to each 
of these k representatives will be calculated by using the similarity 
metrics of Pearson’s correlation and Euclidean distance separately, 
and then the remaining data values will be assigned to their nearest 
representatives based on the similarity measures. After forming k 
clusters, the mean of similarity measures within each cluster will 
be calculated, and the summation of each cluster’s mean similarity 
measures will be calculated and denoted 𝐽𝑐𝑙𝑢𝑠𝑡. Then each cluste-r’s 
representatives will be updated to be the current mean value of the 
cluster. Similarly, all data value will be reassigned to each cluster 
based on their similarity measures with the new representatives, 
and 𝐽𝑐𝑙𝑢𝑠𝑡 will be updated. This process will be repeated until this 
dataset is converged, which means that the value of 𝐽𝑐𝑙𝑢𝑠𝑡 cannot be 
further minimized [8].

Cluster evaluation measures
 After Performing the Clustering, there will be 4 clustering re-

sults for each of those 11 datasets, based on different combinations 
of similarity metrics and the existence of PCA, which are clustering 
based on Pearson’s correlation, Pearson’s correlation on dataset 
with PCA, Euclidean distance, and Euclidean distance on dataset 
with PCA. Each cell type in one cluster is expected to have very sim-
ilar expression level of genes, and they are expected to be identical 
cell types. To benchmark the performance of clustering from using 
these 4 different combinations of clustering methods, a clustering 
evaluation meas-ure called the adjusted rand index will be applied 
to quantify the concordance of clustering results on each single-cell 
RNA-sequencing dataset with respect to their predefined and 
known cell-type annotations [4]. Firstly, for each clustering result, 
a confusion matrix shown in Table 2 will be formed to display the 
concordance of clustering results and predefi-ned cell-type annota-
tions [4]. In Table 2, 𝑎 represents the number of pairs of cell types 
that are placed in the same class in predefined cell-type and in the 
same cluster in clustering partition, while 𝑑 represents the number 
of pairs in different classes and different clusters in both partitions, 
and 𝑎 and 𝑑  all represent the agreement between the clustering re-
sults and predefined cell-type. Conversely, 𝑏 represents the number 
of pairs of cell types in the same class in predefined cell-type but 
not in the same cluster in the clustering partition, and 𝑐 represents 
the reverse. Both of 𝑏 and 𝑐  represent the disagreement between 
the clustering results and predefined cell-type. Hence, the adjust-
ed rand index (ARI) is used to quantify these agreement and dis-
agreement based on a calcula- tion performed on 𝑎, 𝑏,   𝑐, and 𝑑  as 

followings [9]. 

𝐴𝑅𝐼= 2(𝑎𝑑−𝑏𝑐)(𝑎+𝑏)(𝑏+𝑑)+(𝑎+𝑐)(𝑐+𝑑).

Since ARI represents the level of concordan- ce between clus-
tering results and predefined cell-type, it is ranged from 0 to 1, and 
the closer to 1, the higher the level of concordance, and the better 
the clustering performance [9]. For each dataset, there will be 4 ARI 
scores for each different clustering method. In order to compare 
these 4 ARI values to verify that if applying Pearson’s correlation 
on dataset without PCA during the clustering process will outper- 
form other 3 methods, 3 pairwise Wilcoxon rank-sum tests will be 
performed. Wilcoxon rank-sum test is a popular non-parametric 
test for two independent groups without the assumption of normal 
distribution of data values within the group [10]. Before perform-
ing the test, the ARI values for each dataset will be ranked from 
1 to 4, where 1 is for the lowest ARI values and 4 is for the high-
est ARI values. Next, the ranks for each method in all datasets will 
be integrated into a list. Hence, four lists containing ranks for four 
methods will be formed. Since the aim of this report is to verify that 
if clustering based on Pearson’s correlation without PCA will out-
perform other 3 methods, then three pairwise Wilcoxon rank-sum 
tests with the ranks of Pearson’s correlation without PCA against 
the ranks of other three methods will be performed separately with 
the alternative hyp-othesis that the rank of Pearson’s correlation 
without PCA is greater than the rank of other three methods sep-
arately.

Results
Figure 1 displays the comparison of ARI values for each method 

in 11 datasets. Each histogram displays the ARI values for one data-
set, and values on top of each bar represents its corresp-onding. 
ARI value. Since the aim is to verify the performance of the clus-
tering method of Pears-on’s correlation without PCA compared to 
other three clustering methods, then these blue bars in the Figure 
1 will be the main target. Based on Figure 1, it is obvious that histo-
grams 2, 6, 8, 9, 10, and 11 displays the successful outcomes since 
the blue bars in these histograms are higher than other three bars, 
which represents that clustering using Pearson’s correlation on 
datasets without PCA results the highest ARI values indicating the 
best concordance level and clustering perform-ance. Moreover, for 
histogram 4, there is a tie for the AIR values for clustering meth-
od of Pear-son’s correlation without PCA and Euclidean dis-tance 
with PCA. Conversely, for histograms 1, 3, 5, and 7, the clustering 
of Pearson’s correlation without PCA does not outp-erform all of 
other three clustering methods with shorter blue bars and smaller 
ARI values, which represents the negative outcomes. However, it is 
remarkable that for most of the histograms, the ARI values for clus-
tering method of Euclidean distance without PCA are all the small-
est, which is accord with previous studies that clustering using Eu-
clidean distance does not result in a very favorable performance 
[4]. In order to verify the statistical significance of results displayed 
by Figures 1, 3 pairwise Wilcoxon rank-sum tests are performed, 
whose results are displayed in Table 3.
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Figure 1: Comparison of ARI values for each method in 11 datasets.

Table 1: A small subset of a typical gene expression dataset.

00HB4S 00HB4S 00HB4S 00HB4S

A1BG 8 0 3 14

A1CF 2.87 1.61 0 0

A2LD1 0 0 0 0

A2M 0 0 0 0

Table 2: Confusion matrix for measuring the concordance of clustering results with predefined cell type class.

Clustering Partition

No. of pairs in the same class No. of pairs in different classes

Predefined annotation No. of pairs in the same class a b

No. of pairs in different classes c d

Table 3: Results for 3 pairwise Wilcoxon rank-sum test.

Pearson’s correlation without PCA vs

Euclidean distance without PCA Pearson’s correlation with PCA Euclidean distance with PCA

P values 0.0016 0.2043 0.1262

Results Significantly greater No significant difference No significant difference

Table 3 displays that the p-value for Wilcox-on rank-sum test 
with the alternative hypothesis that the rank of ARI values for 

clustering method of Pearson’s correlation without PCA is greater 
Than the ranks of clustering method of Euclidean distance without 
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PCA is 0.0016. Under the 5% significance level, this p-value results 
that the ranks of ARI values of Pearson’s correlation without PCA 
are significantly greater than the one of Euclidean distance with-
out PCA. This is accord with the result of Figure 1. Conversely, the 
p-values for other two Wilcoxon rank-sum tests with the alterna-
tive hypothesis that the ranks of ARI values for clustering method of 
Pearson’s correlation with-out PCA is greater that the ranks of ARI 
values for clustering methods of Pearson’s correlation with PCA 
and Euclidean distance with PCA are 0.2043 and 0.1262, respec-
tively. Under the 5% significance level, these two p-values results 
that there is no significant difference between the ranks of ARI val-
ues of Pearson’s correlation without PCA and either the one of Pear-
son’s correlations with PCA or the one of Euclidean distance with 
PCA. Though the clustering metho-d of Pearson’s correlation with-
out PCA outperfo-rms Pearson’s correlation and Euclidean distance 
with PCA in 6 out of 11 datasets displayed in Figure 1, the differenc-
es between the heights of blue bars and either the green bars (ARI 
values for Euclidean distance with PCA) or purple bars (ARI values 
for Pearson’s correlation with PCA) are mostly not prominent. This 
indicates that Figure 1 is reasonably accord with the results of Wil-
coxon rank-sum tests.

Discussion
With respect to the aim of verifying if the cluster-ing method 

of applying Pearson’s correlation on dataset without PCA will out-
perform the cluster-ing methods of applying Euclidean distance on 
dataset without PCA, Pearson’s correlation on dataset with PCA, 
and Euclidean distance on dataset with PCA, this research can be 
concluded that the clustering method of Pearson’s correlati-on 
without PCA outperforms the clustering meth-od of Euclidean dis-
tance without PCA, while it has similar performance as the cluster-
ing metho-ds of Euclidean distance and Pearson’s correlat-ion with 
PCA. It is mightbe surprised that performing clustering on datasets 
after PCA significantly improves the clustering performance when 
using the clustering method of Euclidean distance, while there is 
no prominent improvement when using the Pearson’s correlation. 
Though a previous study has revealed that applying PCA on the 
dataset can improve its clustering perform-ance [6], there might be 
a top level of concord-ance performance of each dataset by using 
k-means clustering due to its self-limitations, since except for the 
clustering method of Euclidean distance without PCA which has un-
stable and slightly unfavorable performances, other three methods 
with stable performances always have similar levels of clustering 
performances. For instance, in Figure 1, these three methods all re-
sult in similar levels of significantly unfavorable performance for 
datasets 1 and 8, while they all have similarly high levels of per-
formance for datasets 3 and 4. Hence, because of potentially high 
improvement spaces for clust-ering method of Euclidean distance 
without PCA, its performance can be improved up to the top level 
performance of k-means clustering after implementing PCA, which 
results in the performance of clustering method of Euclidean dis-
tance with PCA. However, for the clustering method of Pearson’s 

correlation without PCA which already reaches the range of the 
highest performance of k-means clustering proved by the previ-
ous study [4], there might not be prominent improvement or even 
changes on its performanc-es after applying PCA. So, it results that 
clustering method of Pearson’s correlation without PCA has similar 
level of clustering performance as clustering methods of Euclide-
an distance and Pearson’s correlation with PCA. In order to further 
verify the impact of different combinations of similarity metrics 
and the existence of PCA on the clustering results, other clustering 
algorithms such as SIMLR should be implemented, and its results 
should be compared with the k-means clustering’s. 

This strategy can also overcome the limitations of this research 
which are the onefold implementations of the clustering algorithm 
and cluster evaluation measure, since these might cause some po-
tential and undetectable biases introduced specifically by k-means 
clustering and ARI calculation in the research without comparisons 
with other cluster-ing algorithm and cluster evaluation measures. 
Hence, applying other cluster evaluation measu-res such as NMI, 
FM, and Jaccard index might also refine this research [4].

More importantly, this research demons-trates that using the 
clustering method of Pearson’s correlation or applying clustering 
on datasets after PCA can result in a relative high clustering 
performance. After improving and en-suring the accuracy of 
clusters, it can reduce the difficulty level of using the marker genes to 
identify the cell type for each cluster since cell types in each cluster 
are currently highly to be identical, which can assist the cell type 
identifi-cation [5]. One of the most important purposes of cell type 
identification is to estimate unknown cell types given their gene 
expression profiles, which will be achieved by using classification 
algorith-ms such as k-nearest neighbors. Since k-nearest neighbors 
algorithm also uses similarity metrics such as Pearson’s correlation 
and Euclidean distance to calculate similarities between cells, and 
the quality of classification is also essential, similar approaches 
can be applied to extend this research to investigate the impact of 
different si-milarity metrics on classification performances or even 
the impact of different combinations of similarity metrics used 
for clustering and classification on the final classification perfor-
mance.
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