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Introduction
Historical Development

The problem of model selection is at the core of progress 
in science. Over the decades, scientists have used various 
statistical tools to select among alternative models of data. 
A common challenge for the scientist is the selection of the 
best subset of predictor variables in terms of some specified 
criterion. Tobias Meyer (1750) established the two main 
methods, namely fitting linear estimation and Bayesian 
analysis by fitting models to observation. The 1900 to 1930’s 
saw a great development of regression and statistical ideas 
but were based on hand calculations. In 1951 Kullback 
and Leibler developed a measure of discrepancy from 
Information Theory, which forms the theoretical basis for 
criteria-based model selection. In the 1960’s computers 
enabled scientists to address the problem of model selection. 
Computer programmes were developed to compute all 
possible subsets for an example, Stepwise regression,  
Mallows Cp, AIC, TIC and BIC. During the 1970’s and 1980’s  

 
there was huge spate of proposals to deal with the model 
selection problem. Linhart and Zucchini (1986) provided a 
systematic development of frequentist criteria-based model 
selection methods for a variety of typical situations that 
arise in practice. These included the selection of univariate 
probability distributions, the regression setting, the analysis 
of variance and covariance, the analysis of contingency tables, 
and time series analysis. Bozdogan [1] gives an outstanding 
review to prove how AIC may be applied to compare models 
in a set of competing models and define a statistical model as 
a mathematical formulation that expresses the main features 
of the data in terms of probabilities. In the 1990’s Hastie and 
Tibsharini introduced generalized additive models. These 
models assume that the mean of the dependent variable 
depends on an additive predictor through a nonlinear link 
function. Generalized additive models permit the response 
probability distribution to be any member of the exponential 
family of distributions. They particularly suggested that, up 
to that date, model selection had largely been a theoretical 
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exercise and those more practical examples were needed 
(see Hastie and Tibshirani, 1990).

Philosophical Perspective

The motivation for model selection is ultimately derived 
from the principle of parsimony [2]. Implicitly the principle 
of parsimony (or Occam’s Razor) has been the soul of mod-
el selection, to remove all that is unnecessary. To implement 
the parsimony principle, one has to quantify “parsimony” 
of a model relative to the available data. Parsimony lies be-
tween the evils of under over-fitting. Burnham and Anderson 
[3] define parsimony as “The concept that a model should 
be as simple as possible concerning the included variables, 
model structure, and number of parameters”. Parsimony is 
a desired characteristic of a model used for inference, and 
it is usually defined by a suitable trade-off between squared 
bias and variance of parameter estimators. According to 
Claeskens and Hjort [4], focused information criterion (FIC) 
is developed to select a set of variables which is best for a 
given focus. Foster and Stine [5] predict the onset of personal 
bankruptcy using least squares regression.

They use stepwise selection to find predictors of these 
from a mix of payment history, debt load, demographics, 
and their interactions by showing that three modifications 
turn stepwise regression into an effective methodology for 
predicting bankruptcy. Fresen provides an example to illus-
trate the inadequacy of AIC and BIC in choosing models for 
ordinal polychotomus regression. Initially, during the 60’s, 
70’s and 80’s the problem of model selection was viewed as 
the choice of which variable to include in the data. However, 
nowadays model selection includes choosing the function-
al form of the predictor variables. For example, should one 
use a linear model, or a generalized additive model or even 
perhaps a kernel regression estimator to model the data? It 
should be noted that there is often no one best model, but 
that there may be various useful sets of variabsles (Cox and 
Snell, 1989). The purpose of this paper was to give a chrono-
logical review of some frequentist methods of model selec-
tion that have been proposed from circa 1960 and to apply 
these methods in a practical situation. This research is a re-
sponse to Hastie and Tibsharani’s (1990) call for more ex-
amples.

Data and Assumptions
In this paper the procedures described here, will be 

applied to a data set collected at the Medical University of 

Southern Africa (Medunsa) in 2009. The data consist of all 
the tumours diagnosed in children and adolescents cover-
ing the period 2003 to 2008. The files of the Histopathology 
Department were reviewed and all the tumours occurring 
during the first two decades of a patient’s life were identi-
fied. The following variables were noted: age, sex, site. The 
binary response variable indicated the presence of either 
malignant (0) or benign (1) tumours. In our setting, the 
problem of model selection is not concerned with which 
number of predictor variables to include in the model but 
rather, which functional form should be used to model the 
probability of a malignant tumour as a function of age. For 
binary data it is usual to model the logit of a probability (the 
logit of the probability is the logarithm of the odds), rather 
than the probability itself. Our question was then to select a 
functional form for the logit on the bases of a model selec-
tion criterion such as Akaike information criterion (AIC) or 
Schwarz criterion (BIC).

 We considered various estimators for the logit, name-
ly using linear or quadratic predictors, or additive with 2, 3, 
and 4 degrees of freedom. As an alternation, the probabilities 
were modeled using Kernel estimator with Gaussian Kernel 
for various bandwidths, namely 8.0, 10.0 and 12.5. The mod-
el selection criterion that was used are AIC and BIC. Based 
on the above approach, recommendations will be made as 
to which criteria are most suitable for selecting model se-
lection. The outline of this paper is as follows. In Section 2, 
we provide a brief review of the related literature. Section 
3 presents technical details of some of the major model se-
lection criteria. Some model selection methods which were 
applied to a data set will be discussed in Section 4. Finally, 
Section 5 will provide conclusions and recommendations.

Literature Review

The problem of determining the best subset of indepen-
dent variables in regression has long been of interest to ap-
plied statisticians, and it continues to receive considerable 
attention in statistical literature [6-9]. The focus began with 
the linear model in the 1960`s, when the first wave of im-
portant developments occurred and computing was expen-
sive and time consuming. There are several papers that can 
help us to understand the state-of-the-art in subset selection 
as it developed over the last few decades. Gorman and To-
man [10] proposed a procedure based on a fractional facto-
rial scheme in an effort to identify the better models with 

http://dx.doi.org/10.32474/CTBB.2018.01.000101



Curr Tre Biosta & Biometr Copyrights@ Annah Managa.

Citation: Annah Managa. Model Selection in Regression: Application to Tumoursin Childhood. Curr Tre Biosta & Biometr 1(1)-2018. 
CTBB.MS.ID.000101. DOI: 10.32474/CTBB.2018.01.000101. 3

a moderate amount of computation and using Mallows as a 
criterion. Aitkin [11] discussed stepwise procedures for the 
addition or elimination of variables in multiple regression, 
which by that time were very commonly used. Akaike [12] 
adopted the Kullback-Leibler definition of information, as a 
measure of discrepancy, or asymmetrical distance, between 
a “true” model and a proposed model, indexed on parameter 
vector. 

A popular alternative to AIC presented by Schwarz [13] 
that does incorporate sample size is BIC. Extending Akaike’s 
original work, Sugiura (1978) proposed AICc, a corrected 
version of AIC justified in the context of linear regression 
with normal errors. The development of AICc was motivated 
by the need to adjust for AIC’s propensity to favour high-di-
mensional models when the sample size is small relative to 
the maximum order of the models in the candidate class. The 
early work of Hocking [14] provides a detailed overview of 
the field until the mid-70’s. The literature, and Hocking’s re-
view, focuses largely on (i) computational methods for find-
ing best-fitting subsets, usually in the least – squares sense, 
(ii) mean squares errors of prediction (MSEP) and stopping 
rules. Thomson [15] also discussed three model selection 
criteria in the multiple regression set-up and established the 
Bayesian structure for the prediction problem of multiple re-
gression.

Some of the reasons for using only a subset of the avail-
able predictor variables have been reviewed by Miller [16]. 
Miller [17] described the problem of subset selection as 
the abundance of advice on how to perform the mechanics 
of choosing a model, much of which is quite contradictory. 
Myung [18] described the problem of subset selection as 
choosing simplest models which fit the data. He emphasized 
that a model should be selected based on its generalizability, 
rather than its goodness of fit. According to Forster [9], stan-
dard methods of model selection, like classical hypothesis 
testing, maximum likelihood, Bayes method, Minimum de-
scription length, cross-validation and Akaike’s information 
criterion are able to compensate for the errors in the esti-
mation of model parameters. Busemeyer and Yi-Min Wang 
[19] formalized a generalization criterion method for model 
comparison. Bozdogan [20] presented some recent develop-
ments on a new entropic or information complexity (ICOMP) 
criterion for model selection. Its rationale as a model selec-
tion criterion is that it combines a badness-of-fit term (such 
as minus twice the maximum log likelihood) with a measure 

of complexity of a model differently than AIC, or its variants, 
by taking into account the interdependencies of the parame-
ter estimates as well as the dependencies of the model resid-
uals. Browne [21] gives a review of cross-validation methods 
and the original application in multiple regression that was 
considered first. Kim and Cavanaugh [22] looked at modified 
versions of the AIC (the “corrected” AIC- and the “improved” 
AICM) and the KIC (the “corrected” KIC- and the “improved” 
KICM) in the nonlinear regression framework. Hafidi and 
Mkhadri derived a different version of the “corrected” KIC 
ÐKIC-) and compared it to the AIC- derived by Hurvich and 
Tsai. Abraham [23] looked at model selection methods in the 
linear mixed model for longitudinal data and concluded that 
AIC and BIC are more sensitive to increases in variability of 
the data as

opposed to the KIC

Frequentist Model Selection Criteria
Tools for Model Selection in Regression

Model selection criteria refer to a set of exploratory tools 
for improving regression models. Each model selection tool 
involves selecting a subset of possible predictor variables 
that still account well for the variation in the regression 
model’s observation variable. These tools are often helpful 
for problems in which one wants the simplest possible ex-
planation for variation in the observation variable or wants 
to maximize the chance of obtaining good parameter values 
for regression model. In this section we shall describe sev-
eral procedures that have been proposed for the criterion 
measure, which summarizes the model; These include coef-
ficient of multiple determination (R2), Adjusted-R2 and resid-
ual mean square error (MSE), stepwise methods, Mallow’s 
Cp, Akaike information Criteria (AIC) and Schwarz criterion 
(BIC). The focus will be on AIC and BIC [24-28].

R2 

Is the coefficient of multiple determination and the meth-
od to find subsets of independent variables that best predict 
a dependent variable by linear regression. The method al-
ways identifies the best model as the one with the largest for 
each number of variables considered.

This is defined as

                                      
2 SSY SSER

SSY
−

=

Where SSE (the sum of squares of residuals) and SSY
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Adjusted R - square (adj-R2)

Since the number of parameters in the regression model 
is not taken into account by R2, as R2 is monotonic increases, 
the adjusted coefficient of multiple determination (Adj - R2) 
has been suggested as an alternative criterion. The Adj - R2 
method is similar to the method and it finds the best models 
with the highest Adj- R2 within the range of sizes. 

To determine this, we may calculate the adjusted R- 
square. This is defined as 

                                 
2 MSY MSER adj

MSY
−

=

 where )1/( −= NSSYMSY  and )( knSSEMSE −= . 

Mean Square Error MSE

The mean square error measures the variability of the 
observed points around the estimated regression line, and 

as such is an estimate of the error variance 2σ  . When us-
ing as model selection tools, one would calculate the possible 
subset of the predictor variables and then select the subset 
corresponding to the smallest value of MSE to be included to 
the final model.

 It is defined as

                                                ( )
SSEMSE
n k

=
−

where SSE  is again merely the sum squared error terms 
and does not take account how many observations. The 
smaller the value of MSE, the closer the predicted values 
come to the real value of respond variables.

Mallows Statistics Cp

A measure that is quite widely used in model selection 
is the Cp criterion measure, originally proposed by C.L. Mal-
lows (1973). It has the form:

                                     

where RSSp residual sum of squares from a model con-
taining p parameters, p is the number of parameters in the 

model including 0β , 2s  is the residual mean square from 
the largest equation postulated containing all the sX '  , and 
presumed to be a reliable unbiased estimate of the error 
variance 2σ .

R.W. Kennard (1971) has pointed out that pC  is closely 

related to the adjusted 2
pR  and 2

pR  statistic. Let us consider 

the relationship between adj- 2
pR  or 2

pR  & pC .

 2
pR can be written as 

                                 

where pSSE  being the error of squares and SST is the 
total sum of squares.

The adjusted coefficient of multiple determination (Adj -

2
pR  ),

 may also be considered as: 

                                      

2
pR  and padjR 2  is used for model containing only p of 

the K predictor variables. When the full model is used (all k
predictor variables included) the following notation is used: 

                               

and the estimate of the error variance is then given as:

                                

From equation (i) making pSSE  the subject of the formu-
la. It follows that 

                              

Substitute this into pC
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It is easily seen that pC  can be written as a function of the 

multiple correlation coefficient. Making )1( 2
pR−  the subject 

of the formula from equation (3.7). It follows that in the rela-

tionship between pC  and )(
2

padjR we have

Then from

                    

It is clear that there is a relationship between the adj- 2
pR  

or 2
pR  and pC statistics. In fact in both cases for each P the 

minimum pC  and the maximum adj- 2
pR  or 2

pR  occur for the 
same set of variables, although the P value of finally chosen 

may of course differ. The factor )( kn −  in the first equation 

may cause decreases in minimum pC values as P increases 

although 2
pR is only slowly increasing. Several authors have 

suggested using pC  as a criterion for choosing a model. We 

look for model with a small pC and P preferably we look for a

pC  close to P which means a small bias. 

Forward Selection

In the forward selection procedure the analysis begins 
with no explanatory (independent) variables in the regres-
sion model. For each variable, a statistic called an F-statistic 
(F -to-enter) is calculated; this F-statistic reflects the amount 
of the variable’s contribution to explaining the behaviour 
of the outcome (dependent) variable. The variable with the 
highest value of the F - statistic (F-to-enter) is considered 
for entry into the model. If the F -statistic is significant then 
that variable is added to the model. If -statistic (F -to-enter) 
is greater than 10 or more, then explonatory variables are 
added to form a new current model. The forward selection 
procedures are repeated until no additional explanatory 
variables can be added [29-32].

Backward Elimination

The backward elimination method begins with the larg-
est regression, using all possible explanatory variables and 
subsequently reduces the number of variables in the equa-
tion until is reached in the equation to use. For each vari-
able, a statistic called an F -statistic (F-to-remove) is calcu-
lated. The variable with the lowest value of the F-statistic 
(F-to-remove) is considered for removal from the model. If 
the -statistic is not significant then that variable is removed 
from the model; if the F-statistic (F -to-remove) is 10 or less, 
then explanatory variables are removed to arrive at a new 
current model. The backward selection procedures are re-
peated until none of the remaining explanatory variables can 
be removed [33-39].

Stepwise Regression

Stepwise Regression is a combination of forward selec-
tion and backward elimination. In stepwise selection which 
can start with a full model, with the model containing no 
predictors, or with a model containing some forced vari-
ables, variables which have been eliminated can again be 
considered for inclusion, and variables already included in 
the model can be eliminated. It is important that the F-sta-
tistic (F-to-remove) is defined to be greater than the F-sta-
tistic (F-to-enter), otherwise the algorithm could enter and 
delete the same variable at consecutive steps. Variables can 
be forced to remain in the model and only the other variables 
are considered for elimination or inclusion.

 Akaike Information Criterion (AIC)

Akaike (1973) adopted the Kullback-Leibler definition 

of information );( gfI , as a measure of discrepancy, or 
asymmetrical distance, between a “true” model f and a pro-

posed model g, indexed on parameter vector θ . Based on 

large-sample theory, Akaike derived an estimator for );( gfI  
of the general form:

where the first term tends to decrease as more parame-

ters are added to the approximating family )/( θyg  The sec-
ond term may be viewed as a penalty for over-parameter-
ization.

http://dx.doi.org/10.32474/CTBB.2018.01.000101
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Bayesian Information Criterion (BIC)

Bayesian information criterion (BIC) was introduced by 
Schwartz in 1978. BIC is asymptotically consistent as a selec-
tion criterion. That means, given a family of models including 
the true model, the probability that BIC will select the cor-
rect one approaches one as the sample size becomes large. 
AIC does not have the above property. Instead, it tends to 
choose more complex models as for small or moderate sam-
ples; BIC often chooses models that are too simple, because 
of its heavy penalty on complexity.

A model, which maximizes BIC is considered to be the 
most appropriate model.

                             

Where L is the maximum log likelihood, k is the num-
ber of free parameters and n is the number of independent 
(scalar) observation that contributes to likelihood. Model 
selection here is carried out by trading off lack of fit against 
complexity. A complex model with many parameters, having 
large value in the complexity term, will not be selected un-
less its fit is good enough to justify the extra complexity. The 
number of parameters is the only dimension of complexity 
that this method considers than AIC, BIC always provides 
a model with a number of parameters no greater than that 
chosen by AIC.

Methods 
In this paper the data were partitioned into 13 sites and 

models fitted independently to each site. This was partially 
motivated during a personal discussion with Sir David Cox 
of the University of Oxford, who suggested that the tumours 

at different sites may in fact be different diseases, and there-
fore, may require different models for the logit of the proba-
bilities of malignant tumours. The response variable indicat-
ed the presence of either malignant or benign tumours and 
is therefore a binary response. The task was now to model 
the probability of a malignant tumour in terms of patient 
age. The modern regression theory indicates that the logit of 
these probabilities, rather than the probabilities themselves, 
should be modelled either by a General Linear Model (GLM), 
Generalized Additive Model (GAM) or a Kernel Smooth. 

At each of the 13 sites, the logit of the probabilities was 
modelled by increasingly flexible predictors namely: A GLM 
using linear or quadratic predictors, a GAM with 2, 3, and 
4 degrees of freedom and a Gaussian Kernel smooth using 
various bandwidths, namely 8.0, 10.0 and 12.5. These are 
summarised in Table 1. In order to select which of the above 
model predictor combinations was the best at each site, we 
applied the model selection criteria AIC, BIC and AICc. All 
models were fitted using S-plus 4.0 for the purpose of as-
sessing the models in this study. The routines for computing 
AIC, BIC and AICc in S-plus are given in Appendix 1 to 13. 
The model selection criteria, AIC, BIC and AICc were com-
puted for each of the models described in Table 1 at each site. 
The model with the smallest value of AIC, BIC and AICc was 
then selected as the best model at a particular site. Because 
the Kernel smooth is a non-parametric regression without 
distributional assumption, it does not have a likelihood func-
tion associated with it. Because of this, the model selection 
criteria AIC, BIC and AICc, all of which require a likelihood, 
cannot be computed. We have used Kernel estimators as a 
non- parametric check on the best model selected from the 
GLM’s and GAM’s.

Table 1: Table showing the predictors that were considered for each of the various models.

Model Type Model Number Predictor

GLM

GLM1 logit(p) =  

GLM2 logit(p)  

GLM3 logit(p)  

GAM

GAM1 logit(p) = smooth (x, df = 2)

GAM2 logit(p) = smooth (x, df = 3)

GAM3 logit(p) = smooth (x, df = 4)

KS

KS1 Kernel (x, kernel = “normal”, band widwith = 8.0)

KS2 Kernel (x, kernel = “normal”, band widwith = 10.0)

KS3 Kernel (x, kernel = “normal”, band widwith = 12.5)

http://dx.doi.org/10.32474/CTBB.2018.01.000101
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Results
This section provides a detailed analysis of site 8 (Fig-

ure1) and a summary of the best models that were fitted at 
each of the best sites. This was done through presentation 

and discussion of the fitted models using graphs (Figure 2) 
followed by the analysis of deviance for each of thse fitted 
models as shown in Table 2. Detailed statistics for the other 
sites are given in Appendix 1. 

Figure 1: Comparison of the estimated probability model fitted at GIT.

http://dx.doi.org/10.32474/CTBB.2018.01.000101
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Figure 2: Graphs of estimated probabilities of malignant tumours for the best model at each of the13 sites using either a GLM or 
a GAM.

Detailed Analysis of Site 8 (Genital Internal Track)

Consider the first row of model in Figure 2 which rep-
resents the GLM using respectively a linear, quadratic and 
cubic predictor i.e

logit(p) = x10 ββ +

logit(p) 
2

210 xx βββ ++=

logit(p) 
3

3
2

210 xxx ββββ +++=

http://dx.doi.org/10.32474/CTBB.2018.01.000101
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For these three models, using AIC, BIC and AICc as the 
model selection criteria, the GAM with 2 degrees of freedom 
was the selected model. In Figure 2 the first row provides a 
comparison of the GLM’s using a linear, quadratic and cubic 
predictor. Both the linear and cubic predictor appears to give 
similar reasonable results. The quadratic predictor, howev-
er, seems to have too much forced curvature in the left-hand 
corner which appears to be contrary to medical experience. 
The second row provides a comparison of GAM’s using 2, 
3, and 4 degrees of freedom respectively. The models with 
3 and 4 degrees of freedom appear to have too much force 
curvature. The Gaussian Kernel smooth for bandwidth of 8.0 
and 10.0 shows jubias curve that cannot reflect the proba-
bilities observed in real life. The third row provides a com-
parison of the three final curves selected as the best fitted 
model from the GLM, the GAM and the Kernel Smooth. Based 
on the AIC, BIC and AICc criteria we have selected the GAM 
with 2 degrees of freedom values that are listed below the 
graph. It can be seen from the graph that although this has 
the minimum value of AIC, it is highly constrained by linear-
ity of the predictor. The Kernel Smooth, however, is much 
more flexible and therefore more able to follow the data. The 
Kernel Smooth also seems to indicate that the logit may not 
be linear.

Discussion
Central Nervous System (Figure 2). The graph conveys 

that the probability of a malignant tumour starts from 80% 
at birth and decreases to 50% at age 20. The majority of tu-
mours are malignant primitive neuroectodermal tumours 
and there are few benign tumours. As the children become 
older, the increase in astroeytic tumours remain few.ss The 
model deviance is 3.5 on 2.0 degree of freedom with the 
p=0.174 Therefore we concluded that the model is not sig-
nificant for the deviance. Head and Neck (Figure 2). It starts 
from 10% for infants and increases to 20% for teens. The 
majority of these tumours are benign haemangiomas and 
lymphangionias.

 Very few malignant tumours occur in this area. The mod-
el deviance of 3.1 on 1 degree of freedom with a p= 0.078 
which is not significant (Table 2). Therefore, the model is not 
significant for reducing the deviance in head and neck. Soft 
tissue (Figure 2) There is no change of the probability of a 
malignant tumour from infants to late teens. The majority 
of these tumours are benign, which it remains constant at 

30%. Soft tissue sarcoma is rare. The commonest tumours 
are lymphomas and haemangiomas. The model is not signifi-
cantly different from the null model of constant probability: 
The model deviance is 0.001 on 1 degree of freedom with a 
p= 0.974. Therefore, we concluded that the model is not sig-
nificant for the deviance. Bone (Figure 2) The probability of 
a malignant tumour starts from 35% in early childhood and 
remains constant until age 10 and then rises steeply during 
the teens to 80% at age 20. Bone tumours are rare in infancy. 

The sudden rise of the curve is caused by osteosarcoma 
which is common between the ages of 10 to 20 years. The 
model deviance is 13.0 on 1.9 degrees of freedom with a p= 
0.001. Therefore, we concluded that the model explains a 
significant portion of the deviance. Kidney (Figure 2) There 
is a constant probability of malignant tumours close to 100% 
over all ages from early childhood to age 20. The malignant 
tumour are nephroblastomas. A few cases of congenital neu-
roblastic nephroma were seen in malignant tumour. The 
model is not significantly different from the null model of 
constant probability: model deviance of 0.3 on 1 degree of 
freedom with a p=0.584. Therefore, we concluded that the 
model is not significant for the deviance. 

Liver (Figure 2) The probability curve starts from 95% 
for infants and steadily declines to 10% during the teen’s 
years. The malignant tumours are Hepatoblast, which is 
common before two years. This should explain the sudden 
decline of the curve because malignant tumours are indeed 
very high. The model deviance is 5.6 on 1 degree of freedom 
with a p= 0.018. Therefore, we concluded that the model 
explained a significant portion of deviance. Skin (Figure 2) 
There is a constant probability of malignant tumours close 
to 10% from early childhood to age 10 and this probabili-
ty steadily rises to 20% during teen years. A few malignant 
tumours are present. The probability of contracting a ma-
lignant tumour such as Kaporis sarcoma is rare in children. 
The model deviance is 0.5 on 1 degree of freedom with a p= 
0.479. Therefore, we concluded that the model does not ex-
plain a significant portion of deviance. Genital Internal Track 
(Figure 2) The graph conveys that the probability of a malig-
nant tumour starts from 15% for infants and remains con-
stant until age 13 and then rises steeply during the teens to 
80% at age 20. This is consistent with the experience in med-
ical practice that the probability of contracting a malignant 
tumour, at a very young age in the genital internal track is 
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indeed very low and that there is a sudden rise of malignant 
tumours around the age of 13. 

The sudden rise in the 2nd decade is caused by lympho-
mas. The model is strongly significant: The model deviance 
is 13.1 on 2 degrees of freedom with a p= 0.001. Therefore, 
we concluded that the model explains a significant portion 
of deviance. Lymph Nodes (Figure2) The probability curve 
starts from infants at 90% and remains constant until age 
12 and then decreases during the teens to 40% at age 20. 
Tumours at a very young age are lymph nodes which are 
very high and there is a decrease of the probability curve at 
the age of 13. The commonest tumours were lymphomas. 
The model deviance is 6.9 on 2 degrees of freedom with a 
p=0.031 Therefore we concluded that the model explains 
a significant portion of deviance. Bone Marrow (Figure 2) 
There is a constant probability of malignant tumours close to 
100% from early childhood to age 20 years of age. This reso-
nates with the experience in medical practice that the prob-
ability of contracting malignant tumours is lymphomas and 
leukaemias that are found in malignant tumours. The model 
is not significantly different from the null model of constant 
probability. The model deviance is 0.4 on 1 degree of free-
dom with a p= 0.527. Therefore, we concluded that the mod-
el is not significant. Breast (Figure 2) The probability curve 
starts from 90% at birth and steadily declines from malig-
nant to benign tumours and remains constant at 10% to late 

teens. There was only one malignant tumour at four years. 
This concurs with the experience in medical practice that the 
probability of contracting a malignant tumour increases af-
ter puberty and it is caused by fibroadenomas. The model is 
strongly significant: The model deviance is 18.0 on 2 degrees 
of freedom with a p= 0.0001. Therefore, we concluded that 
the model explains a signify, can’t portion of deviance.

Genital System (Figure 2) There is a constant probability 
of malignant tumours close to 40% from early childhood to 
age 10 and slightly decreases to 2% during teen years. A few 
malignant tumours are present. This is in line with the expe-
rience found in medical practice that the probability of con-
tracting a malignant tumour is benign teratomas. The model 
is not significant: The model deviance is 14.9 on 1 degree of 
freedom with a p= 0.0001. Therefore, we concluded that the 
model is not significant for the deviance in genital system. 
Others (Figure 2) The graph indicates that the probability 
of a malignant tumour starts from 45% for infants and re-
mains constant until age 13 and then rises steeply during the 
teens to 50% until age 20. Malignant tumour for this group 
of patients constitutes all those sites which did not have 
enough cases. This should include sites where childhood ma-
lignamies which are common, and they are rare. The model 
deviance is 1.5 on 1.9 degrees of freedom with a p-value of 
0.448 (Table 2) Therefore, we concluded that the model is 
not significant for the deviance. 

Table 2: Analysis of Deviance for best models at all sites.

Site: Mode Null Dev Res Dev Model Dev df Model df Res P-Value

CNS: GLM 141.8 138.3 3.5 2.0 118 0.174

H&N: GLM 340.1 337.0 3.1 1 366 0.078

S&T: GLM 328.8557 328.8546 0.001 1 269 0.974

B:GAM 232.8 219.8 13.0 1.9 167.0 0.001

K: GLM 18.4 18.1 0.3 1 73 0.584

L: GLM 13.5 7.6 5.6 1 10 0.018

S: GLM 106.9 106.4 0.5 1 136 0.479

GIT:GAM 64.9 51.8 13.1 2 48.0 0.001

LN:GAM 54.5 47.6 6.9 2 51.0 0.031

BM: GLM 23.3 22.9 0.4 1 53 0.527

B:GAM 75.3 57.3 18.0 2 219.0 0.0001

GS: GLM 75.3 60.4 14.9 1 52 0.0001

OTHER:GAM 106.9 105.4 1.5 1.9 30.0 0.448
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Conclusion and Recommendation
The problem of model selection occurs almost every-

where in statistics and we are facing more complicated data 
sets in the study of complex diseases. Tools that are more 
appropriate to the problem, more flexible to use, providing 
a better description, should be adopted. Model selection by 
AIC and BIC is one of these tools. We fitted a General Linear 
Model, Generalized Additive Model or Kernel Smooth using 
AIC and BIC model selections to the binary response to mod-
el the probability of a malignant tumour in terms of patient 
age. The probability of contracting a malignant tumour is 
consistent with the experience in medical practice and is an 
example of how model selections should be applied in prac-
tice. The probability distribution of the response variable 
was specified, and in this respect, a GAM is parametric.

 In this sense they are more aptly named semi-parametric 
models. A crucial step in applying GAMs is to select the 
appropriate level of the ‘‘smoother’’ for a predictor. This is 
best achieved by specifying the level of smoothing using the 
concept of effective degrees of freedom. However, it is clear 
that much work still has to be done, because we have found 
that the Kernel smooth is a non-parametric regression which 
is therefore does not have likelihood function associated 
with it. Because of this the model selection criteria AIC and 
BIC, both of which require a likelihood, cannot be computed. 
We have used Kernel estimators as a non- parametric check 
on the best model selected from the GLM’s and GAM’s. 
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